Skip to main content
Log in

Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg–Y–Nd alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, precipitation behavior of Mg–Y–Nd cast alloy during friction stir processing (FSP), and the effect of subsequent artificial aging on mechanical properties and fracture behavior of the FSP alloy were investigated. It is found that the coarse α-Mg grains and large second phases are greatly refined after FSP. Moreover, due to the heat input during processing and the natural cooling, β′ and β1 precipitates are also observed in the FSP alloy. The FSP specimens were subjected to subsequent artificial aging treatment, and the peak hardness is obtained at 150 °C for 54 h and 180 °C for 30 h. Strengths of the peak–aged specimens are further increased, which is attributed to the large quantity of β″ and β1 precipitates, respectively. Meanwhile, elongations of the peak-aged specimens are both decreased. Due to the comprehensive effects of banded structures and fine grains, failure mechanisms of FSP and peak-aged specimens are all mixed ductile–brittle fracture mode. However, compared to the FSP specimens, different fracture paths are exhibited in peak–aged specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater 42:163–168

    Article  Google Scholar 

  2. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  Google Scholar 

  3. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39:642–658

    Article  Google Scholar 

  4. Charit I, Mishra RS (2005) Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc. Acta Mater 53:4211–4233

    Article  Google Scholar 

  5. Yang Q, Xiao BL, Ma ZY, Chen RS (2011) Achieving high strain rate superplasticity in Mg–Zn–Y–Zr alloy produced by friction stir processing. Scr Mater 65:335–338

    Article  Google Scholar 

  6. Xiao BL, Yang Q, Yang J, Wang WG, Xie GM, Ma ZY (2011) Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd 509:2879–2884

    Article  Google Scholar 

  7. Kumar N, Dendge N, Banerjee R, Mishra RS (2014) Effect of microstructure on the uniaxial tensile deformation behavior of Mg–4Y–3RE alloy. Mater Sci Eng A 590:116–131

    Article  Google Scholar 

  8. Ke LM, Huang CP, Xing L, Huang KH (2010) Al–Ni intermetallic composites produced in situ by friction stir processing. J Alloys Compd 503:494–499

    Article  Google Scholar 

  9. Fonda RW, Bingert JF (2006) Precipitation and grain refinement in a 2195 Al friction stir weld. Metall Mater Trans A 37:3593–3604

    Article  Google Scholar 

  10. Sato YS, Kokawa H, Enomoto M, Jogan S (1999) Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A 30:2429–2437

    Article  Google Scholar 

  11. Panigrahi SK, Yuan W, Mishra RS, DeLorme R, Davis B, Howell RA, Cho K (2011) A study on the combined effect of forging and aging in Mg–Y–RE alloy. Mater Sci Eng A 530:28–35

    Article  Google Scholar 

  12. Su Z, Liu C, Wan Y (2013) Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Mater Des 45:466–472

    Article  Google Scholar 

  13. Kumar N, Choudhuri D, Banerjee R, Mishra RS (2015) Strength and ductility optimization of Mg–Y–Nd–Zr alloy by microstructural design. Int J Plast 68:77–97

    Article  Google Scholar 

  14. Cao GH, Zhang DT, Zhang W, Qiu C (2015) Microstructure evolution and mechanical properties of Mg–Nd–Y alloy in different friction stir processing conditions. J Alloys Compd 636:12–19

    Article  Google Scholar 

  15. Barucca G, Ferragut R, Fiori F, Lussana D, Mengucci P, Moia F, Riontino G (2011) Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy. Acta Mater 59:4151–4158

    Article  Google Scholar 

  16. Nie JF, Muddle BC (1999) Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr Mater 40:1089–1094

    Article  Google Scholar 

  17. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703

    Article  Google Scholar 

  18. Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A (2003) Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater 51:5335–5348

    Article  Google Scholar 

  19. Mengucci P, Barucca G, Riontino G, Lussana D, Massazza M, Ferragut R, Aly EH (2008) Structure evolution of a WE43Mg alloy submitted to different thermal treatments. Mater Sci Eng A 479:37–44

    Article  Google Scholar 

  20. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Precipitation reactions in magnesium–rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater 48:1023–1028

    Article  Google Scholar 

  21. Xu Z, Weyland M, Nie JF (2014) On the strain accommodation of β1 precipitates in magnesium alloy WE54. Acta Mater 75:122–133

    Article  Google Scholar 

  22. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43:3891–3939

    Article  Google Scholar 

  23. Nie JF, Wilson NC, Zhu YM, Xu Z (2016) Solute clusters and GP zones in binary Mg-RE alloys. Acta Mater 106:260–271

    Article  Google Scholar 

  24. Choudhuri D, Dendge N, Nag S, Meher S, Alam T, Gibson MA, Banerjee R (2014) Homogeneous and heterogeneous precipitation mechanisms in a binary Mg-Nd alloy. J Mater Sci 49:6986–7003. doi:10.1007/s10853-014-8404-z

    Article  Google Scholar 

  25. Chai F, Zhang DT, Li YY, Zhang W (2015) Microstructure evolution and mechanical properties of a submerged friction-stir-processed AZ91 magnesium alloy. J Mater Sci 50:3212–3225. doi:10.1007/s10853-015-8887-2

    Article  Google Scholar 

  26. Cao GH, Zhang DT, Chai F, Zhang WW, Qiu C (2015) Superplastic behavior and microstructure evolution of a fine-grained Mg–Y–Nd alloy processed by submerged friction stir processing. Mater Sci Eng A 642:157–166

    Article  Google Scholar 

  27. Mahoney MW, Rhodes CG, Flintoff JG, Spurling RA, Bingel WH (1998) Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 29:1955–1964

    Article  Google Scholar 

  28. Freeney TA, Mishra RS (2010) Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium–rare earth alloy. Metall Mater Trans A 41:73–84

    Article  Google Scholar 

  29. Yang Q, Xiao BL, Ma ZY (2012) Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg–Gd–Y–Zr Casting. Metall Mater Trans A 43:2094–2109

    Article  Google Scholar 

  30. Yu K, Li WX, Wang RC, Wang B, Li C (2008) Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy. Mater Trans 49:1818–1821

    Article  Google Scholar 

  31. Riontino G, Massazza M, Lussana D, Mengucci P, Barucca G, Ferragut R (2008) A novel thermal treatment on a Mg–4.2Y–2.3Nd–0.6Zr (WE43) alloy. Mater Sci Eng A 494:445–448

    Article  Google Scholar 

  32. Choudhuri D, Meher S, Nag S, Dendge N, Hwang J, Banerjee R (2013) Evolution of a honeycomb network of precipitates in a hot-rolled commercial Mg–Y–Nd–Zr alloy. Philos Magn Lett 93:395–404

    Article  Google Scholar 

  33. Ma ZY, Pilchak AL, Juhas MC, Williams JC (2008) Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater 58:361–366

    Article  Google Scholar 

  34. Frost HJ, Ashby MF (1982) Deformation mechanism Map. Pergamon Press, Oxford

    Google Scholar 

  35. Yang Q, Xiao BL, Wang D, Zheng MY, Ma ZY (2015) Study on distribution of long-period stacking ordered phase in Mg–Gd–Y–Zn–Zr alloy using friction stir processing. Mater Sci Eng A 626:275–285

    Article  Google Scholar 

  36. Ning ZL, Yi JY, Qian M, Sun HC, Cao FY, Liu HH, Sun JF (2014) Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting. Mater Des 60:218–225

    Article  Google Scholar 

  37. Liu SJ, Yang GY, Luo SF, Jie WQ (2015) Microstructure and mechanical properties of sand mold cast Mg–4.58Zn–2.6Gd–0.18Zr magnesium alloy after different heat treatments. J Alloys Compd 644:846–853

    Article  Google Scholar 

  38. Zhang Y, Wu YJ, Peng LM, Fu PH, Huang F, Ding WJ (2014) Microstructure evolution and mechanical properties of an ultra-high strength casting Mg–15.6Gd–1.8Ag–0.4Zr alloy. J Alloys Compd 615:703–711

    Article  Google Scholar 

  39. Kang YH, Yan H, Chen RS (2015) Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg–4Y–2.3Nd–1Gd–0.6Zr magnesium alloy. Mater Sci Eng A 645:361–368

    Article  Google Scholar 

  40. Zheng KY, Dong J, Zeng XQ, Ding WJ (2008) Effect of precipitation aging on the fracture behavior of Mg–11Gd–2Nd–0.4Zr cast alloy. Mater Charact. 59:857–862

    Article  Google Scholar 

  41. Zheng KY, Dong J, Zeng XQ, Ding WJ (2008) Precipitation and its effect on the mechanical properties of a cast Mg–Gd–Nd–Zr alloy. Mater Sci Eng A 489:44–54

    Article  Google Scholar 

  42. Shi XH, Zeng WD, Shi CL, Wang HJ, Jia ZQ (2015) The fracture toughness and its prediction model for Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy with basket–weave microstructure. J Alloys Compd 632:748–755

    Article  Google Scholar 

  43. Kong DJ, Liu H, Wang JC (2015) Effects of micro arc oxidation on fatigue limits and fracture morphologies of 7475 high strength aluminum alloy. J Alloys Compd 650:393–398

    Article  Google Scholar 

  44. Lu YZ, Wang QD, Ding WJ, Zeng XQ, Zhu YP (2000) Fracture behavior of AZ91 magnesium alloy. Mater Lett 44:265–268

    Article  Google Scholar 

  45. Yang J, Ni DR, Wang D, Xiao BL, Ma ZY (2014) Friction stir welding of as-extruded Mg–Al–Zn alloy with higher Al content. Part I: Formation of banded and line structures. Mater Charact 96:142–150

    Article  Google Scholar 

  46. Uematsu Y, Tokaji K, Fujiwara K, Tozaki Y, Shibata H (2009) Fatigue behaviour of cast magnesium alloy AZ91 microstructurally modified by friction stir processing. Fatigue Fract Eng Mater Struct 32:541–551

    Article  Google Scholar 

  47. Prakash DGL, Regener D (2008) Quantitative characterization of Mg17Al12 phase and grain size in HPDC AZ91 magnesium alloy. J Alloys Compd 461:139–146

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Research Fund for the Doctoral Program of Higher Education of China (No. 20130172110044), by the Fundamental Research Funds for the Central Universities (No. 2014ZG0028), and by the Natural Science Foundation of Guangdong for Research Team (No. 2015A030312003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Zhang, D., Luo, X. et al. Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg–Y–Nd alloy. J Mater Sci 51, 7571–7584 (2016). https://doi.org/10.1007/s10853-016-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0036-z

Keywords

Navigation