Skip to main content

Advertisement

Log in

Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glasses (BG) show great promise for bone tissue engineering based on their key properties, e.g., biocompatibility, biodegradability, osteoconductivity as well as osteogenic and angiogenic potential, which make them excellent candidates for bone tissue scaffolds and bone substitute materials. Recent work has shown that dissolution products of bioactive glasses have the potential to induce angiogenesis in addition to their known effect of influencing gene expression and promoting osteoblastic differentiation. One of the most interesting features of BG is their ability to bond both to soft and hard tissues, depending on their composition. To intensify the positive impact of BG for medical applications, there are considerable research efforts on using bioactive glass based platforms as carriers for the encapsulation, delivery and controlled release of bioactive molecules and therapeutic drugs. Different types of bioactive glasses have been considered in combination with different therapeutic drugs, hormones, growth factors and peptides. Using bioactive glasses as drug delivery system combines thus the effectiveness of therapeutic drugs (or bioactive/signaling molecules) with the intrinsic advantages of this inorganic biomaterial. Considering research carried out in the last 15 years, this review presents the different chemical compositions and morphologies of bioactive glasses used as carrier for bioactive molecules and therapeutic drugs and discusses the expanding potential of BG with drug delivery capability focusing in the field of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the institution of mechanical engineers. Part H J Eng Med. 2010;224(12):1329–43.

    Google Scholar 

  2. Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans Ser A Math Phys Eng Sci. 2004;362(1825):2821–50.

    Article  CAS  Google Scholar 

  3. Oh S, Oh N, Appleford M, Ong JL. Bioceramics for tissue engineering applications—a review. Am J Biochem Biotechnol. 2006;2(2):49–56.

    Article  CAS  Google Scholar 

  4. Kellomäki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Törmälä P. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials. 2000;21(24):2495–505.

    Article  Google Scholar 

  5. O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev. 2011;17(6):389–92.

    Article  CAS  Google Scholar 

  6. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117–41.

    Article  Google Scholar 

  7. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.

    Article  CAS  Google Scholar 

  8. Puleo DA, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20(23–24):2311–21.

    Article  CAS  Google Scholar 

  9. Vallet-Regí M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;2003(6):1029–42.

    Article  Google Scholar 

  10. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.

    Article  CAS  Google Scholar 

  11. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  CAS  Google Scholar 

  12. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74.

    Article  CAS  Google Scholar 

  13. Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ. Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids. 2008;354(15–16):1690–6.

    Article  CAS  Google Scholar 

  14. Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater. 2009;5(9):3536–47.

    Article  CAS  Google Scholar 

  15. Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C. 2009;29(7):2275–81.

    Article  CAS  Google Scholar 

  16. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25(27):5857–66.

    Article  CAS  Google Scholar 

  17. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5–6):768–77.

    Article  CAS  Google Scholar 

  18. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2009;16(2):199–207.

    Article  Google Scholar 

  19. Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A. 2009;15(4):877–85.

    Article  CAS  Google Scholar 

  20. San Miguel B, Kriauciunas R, Tosatti S, Ehrbar M, Ghayor C, Textor M, Weber FE. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J Biomed Mater Res Part A. 2010;94A(4):1023–33.

    CAS  Google Scholar 

  21. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276(2):461–5.

    Article  CAS  Google Scholar 

  22. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.

    Article  CAS  Google Scholar 

  23. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151–7.

    Article  CAS  Google Scholar 

  24. Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res Part A. 2010;93A(2):475–83.

    CAS  Google Scholar 

  25. Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001;22(12):1683–7.

    Article  CAS  Google Scholar 

  26. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.

    Article  Google Scholar 

  27. Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S. Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res. 2000;51(1):37–46.

    Article  CAS  Google Scholar 

  28. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2(4):231–9.

    Article  CAS  Google Scholar 

  29. Li N, Jie Q, Zhu S, Wang R. Preparation and characterization of macroporous sol–gel bioglass. Ceram Int. 2005;31(5):641–6.

    Article  CAS  Google Scholar 

  30. Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G. Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett. 2006;60(29–30):3752–7.

    Article  CAS  Google Scholar 

  31. Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Roy Soc. 2010;7(43):209–27.

    Google Scholar 

  32. Monsigny M, Roche A-C, Midoux P, Mayer R. Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv Drug Deliv Rev. 1994;14(1):1–24.

    Article  CAS  Google Scholar 

  33. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  Google Scholar 

  34. Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6(8):2874–88.

    Article  CAS  Google Scholar 

  35. Tölli H, Kujala S, Levonen K, Jämsä T, Jalovaara P. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. J Mater Sci Mater Med. 2010;21(5):1677–84.

    Article  CAS  Google Scholar 

  36. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  Google Scholar 

  37. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):187–206.

    Article  CAS  Google Scholar 

  38. Wang M. Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol. 2006;2:80–84.

    Google Scholar 

  39. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Controlled Release. 2006;110(3):522–30.

    Article  CAS  Google Scholar 

  40. Colilla M, Izquierdo-Barba I, Vallet-Regí M. Novel biomaterials for drug delivery. Expert Opin Ther Pat. 2008;18(6):639–56.

    Article  CAS  Google Scholar 

  41. Balas F, Manzano M, Horcajada P, Vallet-Regí M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc. 2006;128(25):8116–7.

    Article  CAS  Google Scholar 

  42. Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.

    Article  CAS  Google Scholar 

  43. Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M. MCM-41 organic modification as drug delivery rate regulator. Chem Mater. 2003;15(2):500–3.

    Article  CAS  Google Scholar 

  44. Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.

    Article  Google Scholar 

  45. Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, Yamazaki A, Satoh T. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29(3):350–8.

    Article  CAS  Google Scholar 

  46. Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479–83.

    Article  CAS  Google Scholar 

  47. Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359–69.

    Article  CAS  Google Scholar 

  48. Goodson JM, Cugini MA, Kent RL, Armitage GC, Cobb CM, Fine D, Fritz ME, Green E, Imoberdorf MJ, Killoy WJ, Mendieta C, Niederman R, Offenbacher S, Taggart EJ, Tonetti M. Multicenter evaluation of tetracycline fiber therapy: II. Clinical response. J Periodontal Res. 1991;26(4):371–9.

    Article  CAS  Google Scholar 

  49. Vanderkerckhove BNA, Quirynen M, Van Steenberghe D. The use of tetracycline-containing controlled-release fibers in the treatment of refractory periodontitis. J Periodontol. 1997;68(4):353–61.

    Article  Google Scholar 

  50. Domingues ZR, Cortés ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25(2):327–33.

    Article  CAS  Google Scholar 

  51. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86(2):147–62.

    Article  CAS  Google Scholar 

  52. Arun R, Ashok KCK, Sravanthi VVNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76:567–98.

    Google Scholar 

  53. Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Syst. 1987;3(1):1–40.

    CAS  Google Scholar 

  54. Domingues RZ, Clark AE, Brennan AB. A sol–gel derived bioactive fibrous mesh. J Biomed Mater Res. 2001;55(4):468–74.

    Article  CAS  Google Scholar 

  55. Andrade AL, Souza DM, Vasconcellos WA, Ferreira RV, Domingues RZ. Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds. J Non-Cryst Solids. 2009;355(13):811–6.

    Article  CAS  Google Scholar 

  56. Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta. 2004;1663:61–73.

    Article  CAS  Google Scholar 

  57. Xie Z, Liu X, Jia W, Zhang C, Huang W, Wang J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Controlled Release. 2009;139(2):118–26.

    Article  CAS  Google Scholar 

  58. Day DE, White JE, Brown RF, McMenamin KD. Transformation of borate glasses into biologically useful materials. Glass Technol. 2003;44(2):75–81.

    CAS  Google Scholar 

  59. Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc. 2007;90(1):303–6.

    Article  CAS  Google Scholar 

  60. Nielsen FH. The emergence of boron as nutritionally important throughout the life cycle. Nutrition. 2000;16(7–8):512–4.

    Article  CAS  Google Scholar 

  61. Soundrapandian C, Basu D, Sa B, Datta S. Local drug delivery system for the treatment of osteomyelitis: in vitro evaluation. Drug Dev Ind Pharm. 2010;37(5):538–46.

    Article  CAS  Google Scholar 

  62. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J Roy Soc. 2011;8(55):153–70.

    CAS  Google Scholar 

  63. Takita H, Vehof JW, Jansen JA, Yamamoto M, Tabata Y, Tamura M, Kuboki Y. Carrier dependent cell differentiation of bone morphogenetic protein-2 induced osteogenesis and chondrogenesis during the early implantation stage in rats. J Biomed Mater Res A. 2004;71(1):181–9.

    Article  CAS  Google Scholar 

  64. Välimäki W, Yrjans JJ, Vuorio E, Aro HT. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A. 2005;75(3):501–9.

    Google Scholar 

  65. Bergeron E, Marquis ME, Chrétien I, Faucheux N. Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J Mater Sci Mater Med. 2007;18(2):255–63.

    Article  CAS  Google Scholar 

  66. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41.

    Article  CAS  Google Scholar 

  67. Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007;362(3):550–3.

    Article  CAS  Google Scholar 

  68. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85-A(8):1544–52.

    Google Scholar 

  69. Pekkarinen T, Lindholm TS, Hietala O, Jalovaara P. New bone formation induced by injection of native reindeer bone morphogenetic protein extract. Scand J Surg. 2003;92:227–30.

    CAS  Google Scholar 

  70. Seeherman HJ, Bouxsein M, Kim H, Li R, Li XJ, Aiolova M, Wozney JM. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate mode. J Bone Joint Surg Am. 2004;86-A(9):1961–72.

    Google Scholar 

  71. Agrawal CM, Best J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials. 1995;16(16):1255–60.

    Article  CAS  Google Scholar 

  72. Athanasiou KA, Singhal AR, Agrawal CM, Boyan BD. In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor. Clin Orthop Relat Res. 1995;315:272–81.

    Google Scholar 

  73. Santos EM, Radin S, Ducheyne P. Sol–gel derived carrier for the controlled release of proteins. Biomaterials. 1999;20(19):1695–700.

    Article  CAS  Google Scholar 

  74. Chen QZ, Ahmed I, Knowles JC, Nazhat SN, Boccaccini AR, Rezwan K. Collagen release kinetics of surface functionalized 45S5 Bioglass-based porous scaffolds. J Biomed Mater Res A. 2008;86(4):987–95.

    CAS  Google Scholar 

  75. Heule M, Rezwan K, Cavalli L, Gauckler LJ. A miniaturized enzyme reactor based on hierarchically shaped porous ceramic microstruts. Adv Mater. 2003;15(14):1191–4.

    Article  CAS  Google Scholar 

  76. Williams RA, Blanch HW. Covalent immobilization of protein monolayers for biosensor applications. Biosens Bioelectron. 1994;9(2):159–67.

    Article  CAS  Google Scholar 

  77. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  78. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte Chemie Internationale Edition. 2004;43(44):5980–4.

    Article  CAS  Google Scholar 

  79. Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials. 2009;30(12):2199–208.

    Article  CAS  Google Scholar 

  80. Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y. A comparative study of mesoporous-glass/silk and non-mesoporous-glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater. 2011;7(5):2229–36.

    Article  CAS  Google Scholar 

  81. Horcajada P, Rámila A, Boulahya K, González-Calbet J, Vallet-Regí M. Bioactivity in ordered mesoporous materials. Solid State Sci. 2004;6(11):1295–300.

    Article  CAS  Google Scholar 

  82. López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Valllet-Regí M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18(13):3137–44.

    Article  CAS  Google Scholar 

  83. Sun J, Li Y, Li L, Zhao W, Li L, Gao J, Ruan M, Shi J. Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J Non-Cryst Solids. 2008;354(32):3799–805.

    Article  CAS  Google Scholar 

  84. Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Controlled Release. 2004;98(2):209–17.

    Article  CAS  Google Scholar 

  85. Sampath SS, Robinson DH. Comparison of new and existing spectrophotometric methods for the analysis of tobramycin and other aminoglycosides. J Pharm Sci. 1990;79(5):428–31.

    Article  CAS  Google Scholar 

  86. Zhang X, Wyss UP, Pichora D, Goosen MFA. A mechanistic study of antibiotic release from biodegradable poly(d,l-lactide) cylinders. J Controlled Release. 1994;31(2):129–44.

    Article  CAS  Google Scholar 

  87. Kim H-W, Kim H-E, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16(12):1529–35.

    Article  CAS  Google Scholar 

  88. Xia W, Zhang D, Chang J. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology. 2007;18(13):135601.

    Article  CAS  Google Scholar 

  89. Hong Y, Chen X, Jing X, Fan H, Gu Z, Zhang X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv Funct Mater. 2010;20(9):1503–10.

    Article  CAS  Google Scholar 

  90. Zhao YF, Loo SCJ, Chen YZ, Boey FYC, Ma J. In situ SAXRD study of sol–gel induced well-ordered mesoporous bioglasses for drug delivery. J Biomed Mater Res Part A. 2007;85A(4):1032–42.

    Article  CAS  Google Scholar 

  91. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of a CaO-P(2)O(5)-SiO(2) system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res. 2000;52(4):601–12.

    Article  CAS  Google Scholar 

  92. Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–78.

    Article  CAS  Google Scholar 

  93. Wu C, Zhang Y, Zhu Y, Friis T, Xiao Y. Structure–property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31(13):3429–38.

    Article  CAS  Google Scholar 

  94. Beresford JN, Joyner CJ, Devlin C, Triffitt JT. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol. 1994;39(11):941–7.

    Article  CAS  Google Scholar 

  95. Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7(4):1797–806.

    Article  CAS  Google Scholar 

  96. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GS. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–52.

    Article  CAS  Google Scholar 

  97. Barrias CC, Ribeiro CC, Lamghari M, Miranda CS, Barbosa MA. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res Part A. 2005;72A(1):57–66.

    Article  CAS  Google Scholar 

  98. Kang S-W, Yang HS, Seo S-W, Han DK, Kim B-S. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J Biomed Mater Res Part A. 2008;85A(3):747–56.

    Article  CAS  Google Scholar 

  99. Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R, Xiao Y. Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res Part A. 2010;95A(2):476–85.

    Article  CAS  Google Scholar 

  100. Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2008;112(1–3):494–503.

    Article  CAS  Google Scholar 

  101. He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358(6383):209–15.

    Article  CAS  Google Scholar 

  102. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57(3):327–35.

    Article  CAS  Google Scholar 

  103. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J Roy Soc. 2010;7(4):379–91.

    Google Scholar 

  104. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–73.

    Article  CAS  Google Scholar 

  105. Yu X, Cai S, Zhang Z, Guohua X. Bioactive pyrophosphate glass/beta-tricalcium phosphate composite with high mechanical properties. Mater Sci Eng C. 2008;28(7):1138–43.

    Article  CAS  Google Scholar 

  106. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  Google Scholar 

  107. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Comp Sci Technol. 2010;70(13):1764–76.

    Article  CAS  Google Scholar 

  108. Li X, Shi J, Dong X, Zhang L, Zeng H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res Part A. 2008;84(1):84–91.

    Google Scholar 

  109. Wei J, Chen F, Shin J-W, Hong H, Dai C, Su J, Liu C. Preparation and characterization of bioactive mesoporous wollastonite—polycaprolactone composite scaffold. Biomaterials. 2009;30(6):1080–8.

    Article  CAS  Google Scholar 

  110. Prabaharan M. Chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23(1):5–36.

    Article  CAS  Google Scholar 

  111. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, Cho C-S. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.

    Article  CAS  Google Scholar 

  112. Cevher E, Orhan Z, Mülazimoğlu L, Sensoy D, Alper M, Yildiz A, Ozsoy Y. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm. 2006;317(2):127–35.

    Article  CAS  Google Scholar 

  113. Phaechamud T, Charoenteeraboon J. Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS PharmSciTech. 2008;9(3):829–35.

    Article  CAS  Google Scholar 

  114. Jia W-T, Zhang X, Luo S-H, Liu X, Huang W-H, Rahaman MN, Day DE, Zhang C-Q, Xie Z-P, Wang J-Q. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 2010;6(3):812–9.

    Article  CAS  Google Scholar 

  115. McCann SJ, White LO, Keevil B. Assay of teicoplanin in serum: comparison of high-performance liquid chromatography and fluorescence polarization immunoassay. J Antimicrob Chemother. 2002;50(1):107–10.

    Article  CAS  Google Scholar 

  116. Zhu M, Zhang L, He Q, Zhao J, Limin G, Shi J. Mesoporous bioactive glass-coated poly(l-lactic acid) scaffolds: a sustained antibiotic drug release system for bone repairing. J Mater Chem. 2011;21(4):1064–72.

    Article  CAS  Google Scholar 

  117. Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–38.

    Article  CAS  Google Scholar 

  118. Boyle VJ, Fancher ME, Ross RW Jr. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob Agents Chemother. 1973;3(3):418–24.

    Article  CAS  Google Scholar 

  119. Wahlig H, Dingeldein E, Bergmann R, Reuss K. The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. J Bone Joint Surg. 1978;60B(2):270–5.

    Google Scholar 

  120. Seligson D, Popham GJ, Voos K, Henry SL, Faghri M. Antibiotic-leaching from polymethylmethacrylate beads. J Bone Joint Surg. 1993;75(5):714–20.

    CAS  Google Scholar 

  121. Arcos D, Ragel CV, Vallet-Regí M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22(7):701–8.

    Article  CAS  Google Scholar 

  122. Vallet-Regí M, Arcos D, Pérez-Pariente J. Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J Biomed Mater Res. 2000;51(1):23–8.

    Article  Google Scholar 

  123. Zhang P, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials. 2009;30(1):58–70.

    Article  CAS  Google Scholar 

  124. Katanec D, Pavelić B, Ivasović Z. Efficiency of polylactide/polyglycolide copolymers bone replacements in bone defects healing measured by densitometry. Collegium antropologicum. 2004;28(1):331–6.

    CAS  Google Scholar 

  125. Bertoldi C, Zaffe D, Consolo U. Polylactide/polyglycolide copolymer in bone defect healing in humans. Biomaterials. 2008;29(12):1817–23.

    Article  CAS  Google Scholar 

  126. Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Comp Sci Technol. 2003;63(16):2417–29.

    Article  CAS  Google Scholar 

  127. Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Controlled Release. 2005;107(3):463–73.

    Article  CAS  Google Scholar 

  128. Wu C, Zhu Y, Chang J, Zhang Y, Xiao Y. Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability. J Biomedical Mater Res Part B Appl Biomater. 2010;94B(1):32–43.

    CAS  Google Scholar 

  129. Halder A, Mukherjee S, Sa B. Development and evaluation of polyethyleneimine-treated calcium alginate beads for sustained release of diltiazem. J Microencapsul. 2005;22(1):67–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hum, J., Boccaccini, A.R. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci: Mater Med 23, 2317–2333 (2012). https://doi.org/10.1007/s10856-012-4580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4580-z

Keywords

Navigation