Skip to main content
Log in

Study of the initial stages of defect generation in ion-irradiated MgO at elevated temperatures using high-resolution X-ray diffraction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The initial stages of defect generation in magnesia (MgO) single crystals irradiated with 1.2 MeV Au+ ions at 573, 773, and 1073 K and at different fluences have been studied. High-resolution X-ray diffraction was used to measure the irradiation-induced elastic strain. Point-defect relaxation volumes were computed using density functional theory calculations. The defect concentration was then calculated. It was found to increase with ion fluence at all temperatures, with maximum values being ~0.46 % at 573 K, ~0.24 % at 773 K, and ~0.13 % at 1073 K. The decrease in the maximum strain with increasing temperature indicates a dynamic annealing. The defect generation efficiencies were found to be very low and the values obtained were in the range of ~2.4, 1.2, and 0.6 % at 573, 773, and 1073 K, respectively. An annealing effect due to electronic energy deposition is suspected to explain these low values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nastasi M, Mayer J, Hirvonen JK (1996) Ion-solid interactions: fundamentals and applications. Cambridge Solid State Science Series, Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Sickafus KE, Kotomin EA, Uberuaga BP (eds) (2007) Radiation effects in solids. Nato Science Series, vol 235. Springer, Berlin

    Google Scholar 

  3. Rivière JP (1995) Radiation induced point defects and diffusion. In: Misaelides P (ed) Application of particle and laser beams in materials technology. Nato Science Series E, vol 283. Springer, Berlin, pp 53–76

    Chapter  Google Scholar 

  4. Lang M, Devanathan R, Toulemonde M, Trautmann Ch (2015) Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr Opin Solid State Mater Sci 19(1):39–48

    Article  Google Scholar 

  5. Moll S, Sattonnay G, Thomé L, Jagielski J, Decorse C, Simon P, Monnet I, Weber WJ (2011) Irradiation damage in Gd2Ti2O7 single crystals: ballistic versus ionization processes. Phys Rev B 84:064115

    Article  Google Scholar 

  6. Hj Matzke, Wang LM (1996) High-resolution transmission electron microscopy of ion irradiated uranium oxide. J Nucl Mater 231:155–158

    Article  Google Scholar 

  7. Velisa G, Debelle A, Vincent L, Thomé L, Declémy A, Pantelica D (2010) He implantation in cubic zirconia: deleterious effect of thermal annealing. J Nucl Mater 402(1):87–92

    Article  Google Scholar 

  8. Wendler E, Breeger B, Schubert Ch, Wesch W (1999) Comparative study of damage generation in ion implanted III-V-compounds at temperatures from 20 to 420 K. Nucl Instrum Methods Phys Res B 147:155–165

    Article  Google Scholar 

  9. Davidge RW (1979) Mechanical behavior of ceramics. Cambridge Solid State Science Series, Cambridge University Press, Cambridge

    Google Scholar 

  10. Macdonald RR, Driscoll MJ (2010) Magnesium oxide: an improved reflector for blanket-free fast reactors. Trans Am Nucl Soc 102:488–489

    Google Scholar 

  11. Somiya S (2013) Handbook of advance ceramics: materials, applications, processing and properties. Academic Press, Waltham

    Google Scholar 

  12. Shikama T, Nishitani T, Kakuta T, Yamamoto S, Kasai S, Narui M, Hodgson E, Reichle R, Brichard B, Krassilinikov A, Snider R, Vayakis G, Costley A, Nagata S, Tsuchiya B, Toh K (2003) Irradiation test of diagnostic components for ITER application in the Japan materials testing reactor. Nucl Fusion 43(7):517–521

    Article  Google Scholar 

  13. Hj Matzke (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Eff 64(1–4):3–33

    Google Scholar 

  14. Youngman RA, Hobbs LW, Mitchell TE (1980) Radiation damage in oxides electron irradiation damage in MgO. J Phys Colloq 41(C6):227–231

    Google Scholar 

  15. Sonoda T, Abe H, Kinoshita Ch, Naramoto H (1997) Formation and growth process of defect clusters in magnesia under ion irradiation. Nucl Instrum Methods Phys Res B 127–128:176–180

    Article  Google Scholar 

  16. Kinoshita Ch, Hayashi K, Kitajima S (1984) Kinetics of point defects in electron irradiated MgO. Nucl Instrum Methods Phys Res B 229(1):209–218

    Article  Google Scholar 

  17. Henderson B, Bowens DH (1971) Radiation damage in magnesium oxide. I. Dose dependence of reactor damage. J Phys C 4:1487–1495

    Article  Google Scholar 

  18. Van Sambeek AI (1997) Radiation-enhanced diffusion and defect generation during ion irradiation of MgO and Al2O3. Thesis (PhD), University of Illinois at Urbana-Champaign

  19. Uberuaga BP, Smith R, Cleave AR, Henkelman G, Grimes RW, Voter AF, Sickafus KE (2005) Dynamical simulations of radiation damage and defect mobility in MgO. Phys Rev B 71:104102

    Article  Google Scholar 

  20. Gilbert CA, Kenny SD, Smith R, Sanville E (2007) Ab initio study of point defects in magnesium oxide. Phys Rev B 76:184103

    Article  Google Scholar 

  21. Mulroue J, Duffy DM (2011) An ab initio study of the effect of charge localization on oxygen defect formation and migration energies in magnesium oxide. Proc R Soc A 467:2054–2065

    Article  Google Scholar 

  22. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York. www.srim.org

  23. Zinkle SJ, Kinoshita C (1997) Defect generation in ceramics. J Nucl Mater 251:200–217

    Article  Google Scholar 

  24. Speriosu VS (1981) Kinematical X-ray diffraction in nonuniform crystalline films: strain and damage distributions in ion-implanted garnets. J Appl Phys 52:6094–6103

    Article  Google Scholar 

  25. Rao S, He B, Houska CR (1991) X-ray diffraction analysis of concentration and residual stress gradients in nitrogen-implanted niobium and molybdenum. J Appl Phys 69(12):8111–8118

    Article  Google Scholar 

  26. Debelle A, Declémy A (2010) XRD investigation of the strain/stress state of ion-irradiated crystals. Nucl Instrum Methods Phys Res B 268:1460–1465

    Article  Google Scholar 

  27. Boulle A, Debelle A (2010) Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J Appl Crystallogr 43:1046–1052

    Article  Google Scholar 

  28. Moll S, Zhang Y, Debelle A, Thomé L, Crocombette JP, Zihua Z, Jagielski J, Weber WJ (2015) Damage processes in MgO irradiated with medium-energy heavy ions. Acta Mater 88:314–322

    Article  Google Scholar 

  29. Speriosu VS, Paine BM, Nicolet MA, Glass HL (1982) X-ray rocking curve study of Si-implanted GaAs, Si, and Ge. Appl Phys Lett 40:604–606

    Article  Google Scholar 

  30. Moll S, Thomé L, Sattonnay G, Debelle A, Vincent L, Garrido F, Jagielski J (2009) Multi-step damage evolution process in cubic zirconia irradiated with MeV ions. J Appl Phys 106:073509

    Article  Google Scholar 

  31. Debelle A, Boulle A, Garrido F, Thomé L (2011) Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study. J Mater Sci 46:4683–4689. doi:10.1007/s10853-011-5375-1

    Article  Google Scholar 

  32. Debelle A, Channagiri J, Thomé L, Décamps B, Boulle A, Moll S, Garrido F, Behar M, Jagielski J (2014) Comprehensive study of the effect of the irradiation temperature on the behavior of cubic zirconia. J Appl Phys 115(18):183504

    Article  Google Scholar 

  33. Van Sambeek AI, Averback RS (1996) Cantilever beam stress measurements during ion irradiation. Mater Res Soc Symp Proc 396:137–142

    Article  Google Scholar 

  34. Ehrhart P, Robrock KH, Shober HR (1986) Basic defects in metals. In: Johnson RA, Orlov AN (eds) Physics of radiation effects in crystals. Elsevier, Amsterdam

    Google Scholar 

  35. Dederichs PH (1973) The theory of diffuse x-ray scattering and its application to the study of point defects and their clusters. J Phys F 3:471–496

    Article  Google Scholar 

  36. Kamminga JD, de Keijser ThH, Delhez R, Mittemeijer EJ (2000) On the origin of stress in magnetron sputtered TiN layers. J Appl Phys 88:6332–6345

    Article  Google Scholar 

  37. Debelle A, Abadias G, Michel A, Jaouen C (2004) Stress field in sputtered thin films: ion irradiation as a tool to induce relaxation and investigate the origin of growth stress. Appl Phys Lett 84(24):5034–5036

    Article  Google Scholar 

  38. Debelle A, Boulle A, Rakotovao F, Moeyaert J, Bachelet C, Garrido F, Thomé L (2013) Influence of elastic properties on the strain induced by ion irradiation in crystalline materials. J Phys D Appl Phys 46(4):045309

    Article  Google Scholar 

  39. Sumino Y, Anderson OL, Suzuki I (1983) Temperature coefficients of elastic constants of single-crystal MgO between 80 and 1300 K. Phys Chem Miner 9:38–46

    Article  Google Scholar 

  40. Sangster MJL, Rowell DK (1981) Calculation of defect energies and volumes in some oxides. Philos Mag A 44:613–624

    Article  Google Scholar 

  41. Scholz C, Ehrhart P (1993) F-centers and oxygen-interstitials in MgO. Mater Res Soc Symp Proc 279:427–432

    Article  Google Scholar 

  42. Hickman BS, Walker DG (1965) Growth of magnesium oxide during neutron irradiation. Philos Mag 11:1101–1108

    Article  Google Scholar 

  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  45. Bruneval F, Varvenne C, Crocombette JP, Clouet E (2015) Pressure, relaxation volume, and elastic interactions in charged simulation cells. Phys Rev B 91:024107

    Article  Google Scholar 

  46. Kinchin GH, Pease RS (1955) The displacement of atoms in solids by radiation. Rep Progr Phys 18(1):1

    Article  Google Scholar 

  47. Krefft GB (1977) Ionization-stimulated annealing effects on displacement damage in magnesium oxide. J Vac Sci Technol 14:533–536

    Article  Google Scholar 

  48. Ogiso H, Nakano S, Akedo J (2003) Abnormal distribution of defects introduced into MgO single crystals by MeV ion implantation. Nucl Instrum Methods Phys Res B 206:157–161

    Article  Google Scholar 

  49. Thomé L, Debelle A, Garrido F, Trocellier P, Serruys Y, Velisa G, Miro S (2013) Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl Phys Lett 102:141906

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the SEMIRAMIS staff for carrying out ion irradiation. XRD measurements on the Panalytical diffractometer have been performed at the nanocenter CTU-IEF-Minerve that is partially funded by the “Conseil Général de l’Essonne.” DBP acknowledges Campus France for the Eiffel Excellence scholarship and Universidad Autónoma de Madrid for the FPI scholarship. Authors would like to thank S. Mylonas for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana Bachiller-Perea or Aurélien Debelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachiller-Perea, D., Debelle, A., Thomé, L. et al. Study of the initial stages of defect generation in ion-irradiated MgO at elevated temperatures using high-resolution X-ray diffraction. J Mater Sci 51, 1456–1462 (2016). https://doi.org/10.1007/s10853-015-9465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9465-3

Keywords

Navigation