Skip to main content
Log in

Carbonization behavior of oxidized viscose rayon fibers in the presence of boric acid–phosphoric acid impregnation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation and carbonization stages of viscose rayon fibers were performed in the presence of 3 % phosphoric acid and 4 % boric acid (PA–BA) impregnation. The results showed that PA–BA impregnation enhanced thermal stability and prevented the evolution of volatile by-products. During the oxidation stage carried out at 250 °C, the cellulose II crystalline structure was totally lost due to the decrystallization process. Carbonization was carried out in a pure nitrogen atmosphere at temperatures ranging from 600 to 1000 °C. The results obtained from the fiber thickness, linear density, carbon fiber yield, elemental analysis, volume density, X-ray diffraction, infrared (IR) and Raman spectroscopy, tensile testing, and electrical conductivity measurements showed that the carbonization temperature had a significant effect on the structure and properties of the resulting carbon fibers. Carbon fibers obtained from the oxidized viscose rayon fibers showed physical and chemical transformations with increasing carbonization temperature and were characterized by a reduction in fiber thickness and linear density values due to the removal of non-carbon elements together with increases in the carbon content, carbon to hydrogen ratio (C/H), volume density, tensile strength, tensile modulus, and electrical conductivity values. X-ray diffraction analysis showed that the interplanar d-spacing (d 002) decreased, and that the apparent crystallite thickness (L c) and the apparent crystallite width (L a) increased with increasing temperature. IR spectroscopy in agreement with the elemental analysis showed the total loss of OH, CH, C=O, CH2, C–O, and C–O–C groups arising from the completion of dehydration and dehydrogenation reactions indicating total elimination of the cellulose structure and the formation of amorphous carbon during high temperature treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Edison TA (1880) Electrical lamp. US Pat. 223,898

  2. Frohs W, Jaeger H (2011) Carbon fiber & composite material-landscape Germany. Tanso 249:174–178

    Article  Google Scholar 

  3. Johnson W, Phillips LN, Watt W (1966) Production of carbon fibres and compositions containing said fibres. US Pat. 3,412,062

  4. Bacon R, Schalamon WA (1969) Physical properties of high modulus graphite fibers made from a rayon precursor. Appl Polym Symp 9:285–292

    Google Scholar 

  5. Shindo A, Nakanishi Y, Soma I (1969) Carbon fibers from cellulose fibers. Appl Polym Symp 9:271–284

    Google Scholar 

  6. Chand S (2000) Carbon fibers for composites. J Mater Sci 35:1303–1313. doi:10.1023/A:1004780301489

    Article  Google Scholar 

  7. Zhang H, Guo L, Shao H, Hu X (2006) Nano-carbon black filled lyocell fiber as a precursor for carbon fiber. J Appl Polym Sci 99:65–74

    Article  Google Scholar 

  8. Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490:63–68

    Google Scholar 

  9. Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250. doi:10.1007/s10853-011-6081-8

    Article  Google Scholar 

  10. Wu Q, Pan D (2002) A new cellulose based carbon fiber from a lyocell precursor. Textile Res J 72:405–410

    Article  Google Scholar 

  11. Peng S, Shao H, Hu X (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90:1941–1947

    Article  Google Scholar 

  12. Donnet J-B, Wang TK, Peng JCM (eds) (1998) Carbon fibers, 3rd edn. Marcel Dekker Inc, New York, pp 41–64

    Google Scholar 

  13. Li H, Yang Y, Wen Y, Liu L (2007) A mechanism study on preparation of rayon based carbon fibers with (NH4)SO4/NH4Cl/organosilicon composite catalyst system. Compos Sci Technol 67:2675–2682

    Article  Google Scholar 

  14. Ross SE (1968) Observations concerning the carbonization of viscose rayon yarn. Textile Res J 38:906–913

    Article  Google Scholar 

  15. Ko YG, Choi US, Kim JS, Park YS (2002) Novel synthesis and characterization of activated carbon fiber and dye adsorption modelling. Carbon 40:2661–2672

    Article  Google Scholar 

  16. Sun J, Wu L, Wang Q (2005) Comparison about the structure and properties of PAN-based activated carbon hollow fibers pretreated with different compounds containing phosphorus. J Appl Polym Sci 96:294–300

    Article  Google Scholar 

  17. Ayranci E, Hoda N (2005) Adsorption kinetics and isotherms of pesticides onto activated carbon cloth. Chemosphere 60:1600–1607

    Article  Google Scholar 

  18. Ayranci E, Hoda N (2004) Adsorption of bentazon and propanil from aqueous solutions at the high area activated carbon cloth. Chemosphere 57:755–762

    Article  Google Scholar 

  19. Kadirvelu K, Faur-Brasquet C, Le Cloirec P (2000) Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir 16:8404–8409

    Article  Google Scholar 

  20. Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer-matrix composite by using activated carbon fibers. Carbon 40:445–467

    Article  Google Scholar 

  21. Xu B, Wu F, Chen S, Zhang C, Cao G, Yang Y (2007) Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim Acta 52:4595–4598

    Article  Google Scholar 

  22. Chen Y, Jiang N (2007) Carbonized and activated non-wovens as high-performance acoustic materials: Part I noise absorption. Textile Res J 77:785–791

    Article  Google Scholar 

  23. Chen Y, Jiang N (2009) Carbonized and activated non-wovens as high-performance acoustic materials: Part I noise insulation. Textile Res J 79:213–218

    Article  Google Scholar 

  24. Alcaniz-Monge J, De la Casa-Lillo MA, Cazorla-Amoros D, Linares-Solano A (1997) Methane storage in activated carbon fibres. Carbon 35:291–297

    Article  Google Scholar 

  25. De la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amoros D, Lineros-Solano A (2002) Hydrogen storage in activated carbons and activated carbon fibers. J Phys Chem B106:10930–10934

    Google Scholar 

  26. Zeng F, Pan D (2008) The structural transitions of rayon under the promotion of a phosphate in the preparation of ACF. Cellulose 15:91–99

    Article  Google Scholar 

  27. Moutaud GM, Duflos JL (1967) Process of graphitizing ‘Polynosic’ regenerated cellulose fibrous textile and resulting fibrous graphite textile. US Pat. 3,322,489

  28. Kong K, Deng L, Kinloch IA, Young RJ, Eichhorn SJ (2012) Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. J Mater Sci 47:5402–5410. doi:10.1007/s10853-012-6426-y

    Article  Google Scholar 

  29. Goldhalm G (2012) Tencel carbon precursor. Lenzinger Berichte 90:58–63

    Google Scholar 

  30. Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) Graphitization of highly crystalline cellulose. Carbon 39:1051–1056

    Article  Google Scholar 

  31. Kuga S, Kim D-Y, Nishiyama Y, Brown RM Jr (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:237–243

    Article  Google Scholar 

  32. Li N, Eichhorn SJ (2006) Potential stiffness of carbon fibres produced from highly crystalline cellulose. J Mater Sci 41:4993–4995. doi:10.1007/s10853-006-0138-0

    Article  Google Scholar 

  33. Sharon M, Sharon M, Kalita G, Mukherjee B (2011) Hydrogen storage by carbon fibers synthesized by pyrolysis of cotton fibers. Carbon Lett 12:39–43

    Article  Google Scholar 

  34. Worasuwannarak N, Hatori S, Nakagawa H, Miura K (2003) Effect of oxidation pre-treatment at 220 to 270 °C on the carbonization and activation behavior of phenolic resin fiber. Carbon 41:933–944

    Article  Google Scholar 

  35. Wu Q-L, Gu S-Y, Gong J-H, Pan D (2006) SEM/STM studies on the surface structure of a novel carbon fiber from lyocell. Synth Mater 156:792–795

    Article  Google Scholar 

  36. Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403

    Article  Google Scholar 

  37. Hindeleh AM, Johnson DJ, Montague PE (1983) Fibre diffraction methods. In: French AD, Gardner KH (eds) ACS Symp. No. 141. American Chemical Society, Washington DC, p 149

  38. Ari H, Soykan C, Özpozan T (2013) Preparation of organic/inorganic hybrid materials using aggregates of poly [2-methyl-N[2-(phenylthio)phenyl] acrylamide-co-2-(trimethylsyloxy) ethyl methacrylate] as precursor and vibrational investigation of the polymerization. J Macromol Sci A 50:1022–1041

    Article  Google Scholar 

  39. Smits, FM (1958) Measurement of sheet resistivities with the four-point probe. Bell Syst Tech J 37:711–718

  40. Erat S, Metin H, Ari M (2008) Influence of the annealing in nitrogen atmosphere on the XRD, EDX, SEM and electrical properties of chemical bath deposited CdSe thin films. Mater Chem Phys 111:114–120

    Google Scholar 

  41. Stokes AR (1948) A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photograph. Proc Phys Soc A166:382–391

    Article  Google Scholar 

  42. Zhang X, Lu Y, Xiao H, Peterlik H (2014) Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers. J Mater Sci 49:673–684. doi:10.1007/s10853-013-7748-0

    Article  Google Scholar 

  43. Ruland W (1969) The relationship between preferred orientation and Young’s modulus of carbon fibers. Appl Polym Symp 9:293–301

    Google Scholar 

  44. Sauder C, Lamon J (2005) Prediction of elastic properties of carbon fibers and CVI matrices. Carbon 43:2044–2053

    Article  Google Scholar 

  45. Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021. doi:10.1007/s10853-012-6970-5

    Article  Google Scholar 

  46. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II and 1 Å resolution. Biomacromolecules 2:410–416

    Article  Google Scholar 

  47. Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013) Carbon nanofibres produced from electrospun cellulose nanofibers. Carbon 58:66–75

    Article  Google Scholar 

  48. Tomizuka I, Isoda Y, Amamiya Y (1981) Carbon fibre from a high-modulus polyamide fibre (Kevlar). Tanso 106:93–101

    Article  Google Scholar 

  49. Ko KS, Park CW, Yoon S-H, Oh SM (2001) Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 39:1619–1625

    Article  Google Scholar 

  50. Puziy AM, Poddubnaya OI, Martinez-Alonso A, Suarez-Garcia F, Tascon JMD (2002) Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon 40:1493–1505

    Article  Google Scholar 

  51. Mennella V, Monaco G, Colangeli L, Bussoletti E (1995) Raman spectra of carbon based materials excited at 1064 nm. Carbon 33:115–121

    Article  Google Scholar 

  52. Escribano R, Sloan JJ, Siddiqui N, Sze N, Dudev T (2001) Raman spectroscopy of carbon-containing particles. Vib Spectrosc 26:179–186

    Article  Google Scholar 

  53. Rhim Y-R, Zhang D, Fairbrother DH, Wepasnick KA, Livi KJ, Bodnar RJ, Nagle DC (2010) Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon 48:1012–1024

    Article  Google Scholar 

  54. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Google Scholar 

  55. Ishimaru K, Hata T, Bronsveld P, Meier D, Imamura Y (2007) Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J Mater Sci 42:122–129. doi:10.1007/s10853-006-1042-3

    Article  Google Scholar 

  56. Yamauchi S, Kurimoto Y (2003) Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters. J Wood Sci 49:235–240

    Article  Google Scholar 

  57. Sze S-K, Siddiqui N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atmos Environ 35:561–568

    Article  Google Scholar 

  58. Paris O, Zollfrank C, Zickler GA (2005) Decomposition and carbonization of wood biopolymers-a microstructural study of softwood pyrolysis. Carbon 43(1):53–66

    Article  Google Scholar 

  59. Nakamizo M (1991) Raman spectra of iron-containing glassy polymers. Carbon 29:757–761

    Article  Google Scholar 

  60. Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373

    Article  Google Scholar 

  61. Wang Y, Serrano S, Santiago-Aviles JJ (2003) Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met 138:423–427

    Article  Google Scholar 

  62. McDonnald-Wharry J, Manley-Harris M, Pickering K (2013) Carbonization of biomass-derived chars and the thermal reduction of a graphene oxide sample studies using Raman spectroscopy. Carbon 59:383–405

    Article  Google Scholar 

  63. Plaisantin H, Pailler R, Guette A, Birot M, Pillot J-P, Daude G, Olry P (2006) Ex-cellulose carbon fibres with improved mechanical properties. J Mater Sci 41:1959–1964. doi:10.1007/s10853-006-1297-8

    Google Scholar 

  64. Ko T-H, Huang L-C (1998) The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization. J Appl Polym Sci 70:2409–2415

    Article  Google Scholar 

  65. Johnson W, Watt W (1967) Structure of high modulus carbon fibres. Nature 215:384–386

    Article  Google Scholar 

Download references

Acknowledgements

The assistance and cooperation of KARSU AŞ (Kayseri) is gratefully acknowledged for providing the viscose rayon multifilaments. The financial support of the Scientific Research Projects Unit of Erciyes University is very much appreciated (project number FLY-2013-4770). Thanks are also extended to Prof Dr Mehmet Ari (Department of Physics, Erciyes University) for the electrical conductivity measurements and to Prof Dr Talat Özpozan (Department of Chemistry, Erciyes University) for the Raman spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Karacan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karacan, I., Gül, A. Carbonization behavior of oxidized viscose rayon fibers in the presence of boric acid–phosphoric acid impregnation. J Mater Sci 49, 7462–7475 (2014). https://doi.org/10.1007/s10853-014-8451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8451-5

Keywords

Navigation