Skip to main content

Advertisement

Log in

Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers was studied. It was observed that the Young’s modulus of the treated fibers increased with heat treatment temperature (HTT) and hot stretching stress, to 173 GPa by 158.2 % through hot stretching at 2700 °C under stress of 270 MPa compared to that of the as-received carbon fiber. Meanwhile the tensile strength increased to 1.75 GPa by 73.3 % through hot stretching at 2700 °C under 252 MPa. The field emission scanning electron images showed markedly increased roughness on the external surface and bigger and more compacted granular morphologies on the cross section of the treated fibers with increasing HTT. The preferred orientation of graphitic layers was improved by hot stretching, and the higher the HTT, the stronger the effectiveness of the hot stretching. The crystallite sizes grew and the crystallite interlayer spacing decreased obviously with increasing HTT but changed just slightly with increasing stretching stress. The analysis based on uniform stress model and shear fracture theory proposed that the improvement of tensile strength and Young’s modulus for rayon-based carbon fiber was mainly due to the increased preferred orientation and nearly unchanged shear modulus between planes with increasing HTT during hot stretching graphitization, which was much different from polyacrylonitrile-based carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chand S (2000) J Mater Sci 35:1303. doi:10.3390/ma6062543

    Article  CAS  ADS  Google Scholar 

  2. Karacan I, Soy T (2013) J Mater Sci 48:2009. doi:10.1002/app.38673

    Article  CAS  ADS  Google Scholar 

  3. Kong K, Deng L, Kinloch IA, Young RJ, Eichhorn SJ (2012) J Mater Sci 47:5402. doi:10.1021/nn203917d

    Article  CAS  ADS  Google Scholar 

  4. Jeong N, Han S, Kim H, Kim H, You Y (2011) J Mater Sci 46:2041. doi:10.1186/1939-8433

    Article  CAS  ADS  Google Scholar 

  5. Li D, Wang H, Wang X (2007) J Mater Sci 42:4642. doi:10.1038/ncomms1735

    Article  CAS  ADS  Google Scholar 

  6. Kaburagi Y, Hosoya K, Yoshida A, Hishiyama Y (2005) Carbon 8:2817

    Article  Google Scholar 

  7. Greene ML, Schwartz RW, Treleaven JW (2002) Carbon 40:1217

    Article  CAS  Google Scholar 

  8. Ogale AA, Lin C, Anderson DP, Kearns KM (2002) Carbon 40:1309

    Article  CAS  Google Scholar 

  9. Endo M (1988) J Mater Sci 23:598

    Article  CAS  ADS  Google Scholar 

  10. Wazir AH, Kakakhel L (2009) New Carbon Mater 24:83

    Article  CAS  Google Scholar 

  11. Dumanli AG, Windle AH (2012) J Mater Sci 47:4236. doi:10.1007/s10853-013-7458-7

    Article  CAS  ADS  Google Scholar 

  12. Ozbek S, Isaac DH (1994) Mater Manuf Process 9:199

    Article  CAS  Google Scholar 

  13. Bacon R, Schalamon WA (1969) Applied Polymer Symposia 285

  14. Reynolds WN, Sharp JV (1974) Carbon 12:103

    Article  CAS  Google Scholar 

  15. Ruland W (1969) Applied Polymer Symposia 9:293

    Google Scholar 

  16. Northolt MG, Veldhuizen LH, Jansen H (1991) Carbon 29:1267

    Article  CAS  Google Scholar 

  17. Sauder C, Lamon J (2005) Carbon 43:2044

    Article  CAS  Google Scholar 

  18. Xiao H, Lu Y, Qin X, Wen Y (2011) Mater Sci Forum 686:770

    Article  CAS  Google Scholar 

  19. Qin X, Lu Y, Xiao H, Wen Y, Yu T (2012) Carbon 50:4459

    Article  CAS  Google Scholar 

  20. Guinier A, Fournet G (1951) In: Small-angle scattering of X-rays. Willy, New York

    Google Scholar 

  21. Wen Y, Lu Y, Xiao H, Qin X (2012) Mater Des 36:728

    Article  CAS  Google Scholar 

  22. Fitzer E (1989) Carbon 27:621

    Article  Google Scholar 

  23. Fischer L, Ruland W (1980) Colloid Polym Sci 258:917

    Article  CAS  Google Scholar 

  24. Qin X, Lu Y, Xiao H, Song Y (2012) Mater Lett 76:162

    Article  CAS  Google Scholar 

  25. Xiao H, Lu Y, Wang M, Qin X, Luan J (2013) Carbon 52:427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the support from the National Special Fund for Forestry Scientific Research in the Public Interest (Grant No.201004057), the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China, and the Innovation Funds for Ph.D Students of Donghua University and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, Y., Xiao, H. et al. Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers. J Mater Sci 49, 673–684 (2014). https://doi.org/10.1007/s10853-013-7748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7748-0

Keywords

Navigation