Skip to main content
Log in

Host−guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The thermal stability and slow release of nicotine are crucial to its shelf-life and applications. In this article, three kinds of acyclic cucurbit[n]urils (ACBs) were synthesized with cation or anion arms, benzene or naphthalene wall, aiming to handily adjust the binding ability of ACBs. The complexation behaviors and binding affinity of nicotine with ACBs in aqueous and solid state were investigated via fluorescence spectroscopy, NMR, XRD, FT−IR and DSC, which revealed the formation of host−guest inclusion systems with different stability constants (Ks). The heat-controlled release in solid state of the complexes were studied via 1H NMR spectra and TGA. Compared to nicotine, the complexes exhibited less volatility, longer retention time, better water solubility and heat-controlled release. It is our special interest to explore the binding behaviors of all kinds of ACBs with nicotine, controlled heat releases of nicotine with ACBs, which will provide a useful approach to achieve novel formulation of nicotine inclusion complexes used for products including nicotine with controlled heat releases.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rodgman, A., Perfetti, T.A.: The Chemical Components of Tobacco and Tobacco Smoke, pp. 1221–1444. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  2. Jain, G., Jaimes, E.A.: Nicotine signaling and progression of chronic kidney disease in smokers. Biochem. Pharmacol. 86(8), 1215–1223 (2013)

    Article  CAS  Google Scholar 

  3. Benowitz, N.L., Hukkanen, J., Jacob, P.: Nicotine Chemistry, Metabolism, Kinetics and Biomarkers, Nicotine Psychopharmacology, pp. 29–60. Springer, Berlin (2009)

    Book  Google Scholar 

  4. Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A.J.N.: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nat. Commun. 452(7187), 638–642 (2008)

    Article  CAS  Google Scholar 

  5. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug. Deliv. Rev. 59(7), 645–666 (2007)

    Article  CAS  Google Scholar 

  6. Hădărugă, D.I., Hădărugă, N.G., Butnaru, G., Tatu, C., Gruia, A.: Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 68(1–2), 155–164 (2010)

    Article  Google Scholar 

  7. Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 6, 619–629 (2009)

    Article  Google Scholar 

  8. Ganapati, S., Isaacs, L.: Acyclic cucurbit[n]uril-type receptors: preparation, molecular recognition properties and biological applications. ISR. J. Chem. 58(3–4), 250–263 (2018)

    Article  CAS  Google Scholar 

  9. Ma, D., Hettiarachchi, G., Nguyen, D., Zhang, B., Wittenberg, J.B., Zavalij, P.Y., Briken, V., Isaacs, L.: Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem 4(6), 503–510 (2012)

    Article  CAS  Google Scholar 

  10. Zhang, B., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs. J. Med. Chem. 57(22), 9554–9563 (2014)

    Article  CAS  Google Scholar 

  11. Gilberg, L., Zhang, B., Zavalij, P.Y., Sindelar, V., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents. Org. Biomol. Chem. 13(13), 4041–4050 (2015)

    Article  CAS  Google Scholar 

  12. Minami, T., Esipenko, N.A., Zhang, B., Kozelkova, M.E., Isaacs, L., Nishiyabu, R., Kubo, Y., Anzenbacher, P., Jr.: Supramolecular sensor for cancer-associated nitrosamines. J. AM. Chem. Soc. 134(49), 20021–20024 (2012)

    Article  CAS  Google Scholar 

  13. Huang, C.Y.: Determination of binding stoichiometry by the continuous variation method: the job plot. In: Methods in Enzymology, pp. 509–525. Elsevier, Amsterdam (1982)

    Google Scholar 

  14. Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40(3), 1305–1323 (2011)

    Article  CAS  Google Scholar 

  15. Fang, L., Olson, M.A., Benítez, D., Tkatchouk, E., Goddard, W.A., III., Stoddart, J.: Mechanically bonded macromolecules. Chem. Soc. Rev. 39(1), 17–29 (2010)

    Article  CAS  Google Scholar 

  16. Li, Y., Li, Y., Zhang, X., Xu, X., Zhang, Z., Hu, C., He, Y., Gu, Z.: Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics 6(9), 1293 (2016)

    Article  CAS  Google Scholar 

  17. Mao, D., Liang, Y., Liu, Y., Zhou, X., Ma, J., Jiang, B., Liu, J., Ma, D.: Acid-labile acyclic cucurbit[n]uril molecular containers for controlled release. Angew. Chem. 129(41), 12788–12792 (2017)

    Article  Google Scholar 

  18. Lyukmanova, E.N., Shenkarev, Z.O., Shulepko, M.A., Mineev, K.S., D’Hoedt, D., Kasheverov, I.E., Filkin, S.Y., Krivolapova, A.P., Janickova, H., Dolezal, V.: NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286(12), 10618–10627 (2011)

    Article  CAS  Google Scholar 

  19. Xu, J., Zhang, Y., Li, X., Zheng, Y.: Inclusion complex of nateglinide with sulfobutyl ether β-cyclodextrin: preparation, characterization and water solubility. J. Mol. Struct. 1141, 328–334 (2017)

    Article  CAS  Google Scholar 

  20. Yang, W., Yang, L., Li, F.: pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J. Mol. Struct. 1228, 129744 (2021)

    Article  CAS  Google Scholar 

  21. Wang, J., Cao, Y., Sun, B.: Physicochemical and release characterization of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127(4), 1680–1685 (2011)

    Article  CAS  Google Scholar 

  22. Kayaci, Fatma: Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res. Int. 62, 424–431 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC), (No. 21961017 and 21642001), and and the Science and Technology Project of China Tabacoo Yunnan Industrial Co. (No. 2019YL01), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoxing Wang or Bo Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, L., Dong, G. et al. Host−guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases. J Incl Phenom Macrocycl Chem 100, 197–207 (2021). https://doi.org/10.1007/s10847-021-01073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01073-7

Keywords

Navigation