Skip to main content
Log in

Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The paper presents a comparative thermal and oxidative stability study between nicotine/β-cyclodextrin microparticles and commercial nicotine. It is well known that the nicotine is the bioactive compound in formulations used for smoking cessation and no studies among the stability of nicotine in cyclodextrin-containing formulations were reported. The non-enzymatic and enzymatic oxidation of nicotine can lead to cotinine (an alkaloid/metabolite with a lower toxicity), but another way is the obtaining of the cancerigene N-nitroso-nicotine derivatives by nornicotine derivative intermediates (like nornicotine and myosmine). The present study demonstrates the protecting capacity of β-cyclodextrin for commercial nicotine against thermal and oxidative factors: for the non-complexed nicotine the thermal and oxidative degradation led to a decrease of the relative concentration of nicotine from 96 to 92% for an increasing temperature from 30 to 90 °C (in the presence of air at normal pressure), with an increase of the relative concentration of the corresponding oxidized compounds (like cotinine and furthermore myosmine up to 0.7%, and up to 4.7%, respectively). For the nicotine/β-cyclodextrin complex the interaction selectivity was higher for nicotine and the stability of this bioactive compound against oxidation was also higher in comparison with the non-complexed nicotine (around 98% in all cases).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bCD:

β-cyclodextrin

KI:

Kovats Index

TG:

Thermogravimetry

GC-MS:

Gas chromatography-mass spectrometry

SEM:

Scanning electron microscopy

KFT:

Karl Fischer titration

References

  1. Dewick, P.M.: Medicinal Natural Products. A Biosynthetic Approach. Wiley, Chichester (2002)

    Google Scholar 

  2. Ullmann’s Encyclopedia of Industrial Chemistry®, 6th edition, Electronic Release. Wiley-VCH & AND CompLex Publ. Tech., ver. 3.5, Chichester-New York-Brisbane-Toronto-Singapore (2002)

  3. Sheen, S.J.: Detection of nicotine in foods and plant materials. J. Food Sci. 53, 1572–1573 (1988). doi:10.1111/j.1365-2621.1988.tb09328.x

    Article  CAS  Google Scholar 

  4. Page Sharp, M., Hale, T.W., Hackett, L.P., Kristensen, J.H., Ilett, K.F.: Measurement of nicotine and cotinine in human milk by high-performance liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B 796, 173–180 (2003). doi:10.1016/j.jchromb.2003.08.020

    Article  CAS  Google Scholar 

  5. Murphy, S.E., Raulinaitis, V., Brown, K.M.: Nicotine 5′-oxidation and methyl oxidation by P450 2A enzymes. Drug Metab. Dispos. 33, 1166–1173 (2005)

    Article  CAS  Google Scholar 

  6. Van Vleet, T.R., Bombick, D.W., Coulombe Jr, R.A.: Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol. Sci. 64, 185–191 (2001). doi:10.1093/toxsci/64.2.185

    Article  Google Scholar 

  7. Matt, G.E., Hovell, M.F., Quintana, P.J.E., Zakarian, J., Liles, S., Meltzer, S.B., Benowitz, N.L.: The variability of urinary cotinine levels in young children: implications for measuring ETS exposure. Nicotine Tob. Res. 9, 83–92 (2007). doi:10.1080/14622200601078335

    Article  CAS  Google Scholar 

  8. O’Connor, R.J., Kozlowski, L.T., Hammond, D., Vance, T.T., Stitt, J.P., Cummings, K.M.: Digital image analysis of cigarette filter staining to estimate smoke exposure. Nicotine Tob. Res. 9, 865–871 (2007). doi:10.1080/14622200701485026

    Article  Google Scholar 

  9. Assunta, M., Chapman, S.: The lightest market in the world: light and mild cigarettes in Japan. Nicotine Tob. Res. 10, 803–810 (2008). doi:10.1080/14622200802023882

    Article  Google Scholar 

  10. Peters, E., Romer, D., Slovic, P., Jamieson, K.H., Wharfield, L., Mertz, C.K., Carpenter, S.M.: The impact and acceptability of Canadian-style cigarette warning labels among U.S. smokers and nonsmokers. Nicotine Tob. Res. 9, 473–481 (2007). doi:10.1080/14622200701239639

    Article  Google Scholar 

  11. Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., Stacey, S.N., Bergthorsson, J.T., Thorlacius, S., Gudmundsson, J., Jonsson, T., Jakobsdottir, M., Saemundsdottir, J., Olafsdottir, O., Gudmundsson, L.J., Bjornsdottir, G., Kristjansson, K., Skuladottir, H., Isaksson, H.J., Gudbjartsson, T., Jones, G.T., Mueller, T., Gottsater, A., Flex, A., Aben, K.K.H., de-Vegt, F., Mulders, P.F.A., Isla, D., Vidal, M.J., Asin, L., Saez, B., Murillo, L., Blondal, T., Kolbeinsson, H., Stefansson, J.G., Hansdottir, I., Runarsdottir, V., Pola, R., Lindblad, B., van-Rij, A.M., Dieplinger, B., Haltmayer, M., Mayordomo, J.I., Kiemeney, L.A., Matthiasson, S.E., Oskarsson, H., Tyrfingsson, T., Gudbjartsson, D.F., Gulcher, J.R., Jonsson, S., Thorsteinsdottir, U., Kong, A., Stefansson, K.: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–641 (2008). doi:10.1038/nature06846

    Article  CAS  Google Scholar 

  12. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007). doi:10.1016/j.addr.2007.05.012

    Article  CAS  Google Scholar 

  13. Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005). doi:10.1016/j.ejpb.2005.05.006

    Article  CAS  Google Scholar 

  14. Szente, L., Szejtli, J.: Cyclodextrins as food ingredients. Trends Food Sci Technol. 15, 137–142 (2004). doi:10.1016/j.tifs.2003.09.019

    Article  CAS  Google Scholar 

  15. Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: Flavor release from cyclodextrin complexes: comparison of α, β, and γ types. J. Food Sci. 68, 1234–1239 (2003). doi:10.1111/j.1365-2621.2003.tb09631.x

    Article  CAS  Google Scholar 

  16. Partanen, R., Ahro, M., Hakala, M., Kallio, H., Forssell, P.: Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur. Food Res. Technol. 214, 242–247 (2002). doi:10.1007/s00217-001-0446-1

    Article  CAS  Google Scholar 

  17. Tian, X.-N., Jiang, Z.-T., Li, R.: Inclusion interactions and molecular microcapsule of Salvia sclarea L. essential oil with β-cyclodextrin derivatives. Eur. Food Res. Technol. 227, 1001–1007 (2008). doi:10.1007/s00217-007-0813-7

    Article  CAS  Google Scholar 

  18. Jullian, C., Moyano, L., Yanez, C., Olea Azar, C.: Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochim. Acta A 67, 230–234 (2007). doi:10.1016/j.saa.2006.07.006

    Article  Google Scholar 

  19. Martín, L., León, A., Olives, A.I., Olives, A.I., del Castillo, B., Martín, M.A.: Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with β-cyclodextrin and chemically modified β-cyclodextrins. Talanta 60, 493–503 (2003). doi:10.1016/S0039-9140(03)00066-3

    Article  Google Scholar 

  20. Berglund, J., Cedergren, L., Andersson, S.B.: Determination of the stability constant for the inclusion complex between β-cyclodextrin and nicotine using capillary electrophoresis. Int. J. Pharm. 156, 195–200 (1997). doi:10.1016/S0378-5173(97)00203-2

    Article  CAS  Google Scholar 

  21. Bettini, R., Catellani, P.L., Santi, P., Massimo, G., Cocconi, D., Colombo, P.: Nicotine nasal powder: design and characterization. STP Pharma Sci. 9, 457–462 (1999)

    CAS  Google Scholar 

  22. Davaran, S., Rashidi, M.R., Khandaghi, R., Hashemi, M.: Development of a novel prolonged-release nicotine transdermal patch. Pharmacol. Res. 51, 233–237 (2005). doi:10.1016/j.phrs.2004.08.006

    Article  CAS  Google Scholar 

  23. Armstrong, D.W., Spino, L.A., Han, S.M., Seeman, J.I., Secor, H.V.: Enantiomeric resolution of racemic nicotine and nicotine analogues by microcolumn liquid chromatography with β-cyclodextrin inclusion complexes. J. Chromatogr. A 411, 490–493 (1987). doi:10.1016/S0021-9673(00)94006-8

    Article  CAS  Google Scholar 

  24. McCorquodale, E.M., Boutrid, H., Colyer, C.L.: Enantiomeric separation of N′-nitrosonornicotine by capillary electrophoresis. Anal. Chim. Acta 496, 177–184 (2003). doi:10.1016/S0003-2670(03)00998-X

    Article  CAS  Google Scholar 

  25. Sellergren, B., Zander, A., Renner, T., Swietlow, A.: Rapid method for analysis of nicotine and nicotine-related substances in chewing gum formulations. J. Chromatogr. A 829, 143–152 (1998). doi:10.1016/S0021-9673(98)00798-5

    Article  CAS  Google Scholar 

  26. Hădărugă, N.G., Hădărugă, D.I., Păunescu, V., Tatu, C., Ordodi, V.L., Bandur, G.N., Lupea, A.X.: Bioactive nanoparticles (6). Thermal stability of linoleic acid/α- and β-cyclodextrin complexes. Food Chem. 99, 500–508 (2006). doi:10.1016/j.foodchem.2005.08.012

    Article  Google Scholar 

  27. Hădărugă, D.I., Hădărugă, N.G., Resiga, D., Pode, V., Dumbravă, D., Lupea, A.X.: Obtaining and characterization of sage (Salvia sclarea L.) essential oil/β-cyclodextrin supramolecular systems. Rev. Chim. (Bucharest) 58, 566–573 (2007)

    Google Scholar 

  28. Hădărugă, D.I., Hădărugă, N.G., Hermenean, A., Riviş, A., Pâslaru, V., Codina, G.: Bionanomaterials: thermal stability of the oleic acid/α- and β-cyclodextrin complexes. Rev. Chim. (Bucharest) 59, 994–998 (2008)

    Google Scholar 

  29. Hădărugă, D.I., Hădărugă, N.G., Riviş, A., Pârvu, D.: Molecular modeling and docking studies on compositae biocompounds-cyclodextrin interactions. J. Agroalim. Proc. Tech. 15, 273–282 (2009)

    Google Scholar 

  30. Hădărugă, D.I., Balş, D., Hădărugă, N.G.: Insulin-containing amino acids and oligopeptides/β-cyclodextrin supramolecular systems: molecular modeling and docking experiments. Chem. Bull. Politehnica Univ. (Timisoara) 54, 108–113 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education and Research of Romania [Grant CEEX P-CD 18/2005 and Grant PN2 62072/2008 for KFT]. All authors were members of the research teams in the above mentioned grants. Authors are grateful to Professor Heinz-Dieter Isengard (Hohenheim University, Germany) for the help in Karl Fischer water titration, to Professor Geza Bandur (“Politehnica” University of Timişoara, Romania) for the help in TG analysis, and to Professor Mircea Mracec (“Coriolan Drăgulescu” Institute of Chemistry, Timişoara, Romania) for permission to use the HyperChem molecular modeling package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ioan Hădărugă.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hădărugă, D.I., Hădărugă, N.G., Butnaru, G. et al. Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 68, 155–164 (2010). https://doi.org/10.1007/s10847-010-9761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9761-0

Keywords

Navigation