Skip to main content
Log in

Colorimetric chemosensor for Fe2+ and Fe3+ based on a ternary mixture of an anionic dye, a cationic polyelectrolyte, and a metal chelator in aqueous solution

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new colorimetric chemosensor based on a simple ternary mixture of an anionic dye, pyrogallol red (PR), a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), and a metal chelator, N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) for the colorimetric detection of Fe2+ and Fe3+ has been developed in an aqueous solution buffered at pH 5. Upon addition of Fe2+ or Fe3+ to the mixture, the absorption spectra showed a bathochromic shift; correspondingly, the solution color changed from red to blue, whereas other metal ions basically resulted in insignificant spectral and color changes. From the competitive experiments, no obvious interferences for the colorimetric detection of Fe2+ and Fe3+ were observed in the presence other metal ions. The results indicated that the mixture could be used as a potential Fe2+ and Fe3+ colorimetric and naked eye chemosensor in aqueous media. This research demonstrates that the ternary ensemble consisted of an organic dye, an oppositely charged polyelectrolyte, and a metal chelator is a versatile and convenient tool for the facile preparation of a novel chemosensor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quang, D.T., Kim, J.S.: Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 110, 6280–6301 (2010)

    Article  CAS  Google Scholar 

  2. Sharma, H., Kaur, N., Singh, A., Kuwar, A., Singh, N.: Optical chemosensors for water sample analysis. J. Mater. Chem. C 4, 5154–5194 (2016)

    Article  CAS  Google Scholar 

  3. Jeong, Y., Yoon, J.: Recent progress on fluorescent chemosensors for metal ions. Inorg. Chim. Acta 381, 2–14 (2014)

    Article  CAS  Google Scholar 

  4. Beutler, E., Felitti, V., Gelbart, T., Ho, N.: Genetics of iron storage and hemochromatosis. Drug. Metab. Dispos. 29, 495–499 (2001)

    CAS  PubMed  Google Scholar 

  5. Cairo, G., Pietrangelo, A.: Iron regulatory proteins in pathobiology. Biochem. J. 352, 241–250 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Touati, D.: Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1–6 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. D’Autreaux, B., Tucker, N.P., Dixon, R., Spiro, S.: A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437, 769–772 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y.: The roles of iron in health and disease. Mol. Aspects Med. 22, 1–87 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Burdo, J.R., Connor, J.R.: Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16, 63–75 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Connor, J.R., Menzies, S.L., Martin, S.M.S., Mufson, E.J.: Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J. Neurosci. Res. 27, 595–611 (1990)

    Article  CAS  PubMed  Google Scholar 

  11. Wójciak, R.W., Mojs, E., Stanislawska-Kubiak, M.: The occurrence of iron-deficiency anemia in children with type 1 diabetes. J. Investig. Med. 62, 865–867 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Simcox, J.A., McClain, D.A.: Iron and diabetes risk. Cell Metab. 17, 329–341 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinreb, O., Mandel, S., Youdim, M.B.H., Amit, T.: Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic. Biol. Med. 62, 52–64 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Torti, S.V., Torti, F.M.: Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Que, E.L., Domaille, D.W., Chang, C.J.: Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Vanloot, P., Coulomb, B., Brach-Papa, C., Sergent, M., Boudenne, J.L.: Multivariate optimization of solid phase extraction applied to iron determination in finished waters. Chemosphere 69, 1351–1360 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Canfranc, E., Abarca, A., Sierra, I., Marina, M.L.: Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing. J. Pharm. Biomed. Anal. 25, 103–108 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Ling, I., Hashima, R., Sabah, K.J.: Sugar thiacrown-ether appended calix[4]arene as a selective chemosensor for Fe2+ and Fe3+ ions. RSC Adv. 5, 88038–88044 (2015)

    Article  CAS  Google Scholar 

  19. Singh, G., Singh, J., Singh, J., Mangat, S.S.: Design of selective 8-methylquinolinol based ratiometric Fe2+ and Fe3+/H2PO4 fluorescent chemosensor mimicking NOR and IMPLICATION logic gates. J. Lumin. 165, 123–129 (2015)

    Article  CAS  Google Scholar 

  20. Oh, J.W., Kim, T.H., Yoo, S.W., Lee, Y.O., Lee, Y., Kim, H., Kim, J., Kim, J.S.: Multisignaling metal sensor: optical, electrochemical, and electrochemiluminescent responses of cruciform-shaped alkynylpyrene for selective recognition of Fe3+. Sens. Actuators B 177, 813–817 (2013)

    Article  CAS  Google Scholar 

  21. Kaur, N., Kuma, S.: Colorimetric metal ion sensors. Tetrahedron 67, 9233–9264 (2011)

    Article  CAS  Google Scholar 

  22. Kim, Y.S., Park, G.J., Lee, J.J., Lee, S.Y., Lee, S.Y., Kim, C.: Multiple target chemosensor: a fluorescent sensor for Zn(II) and Al(III) and a chromogenic sensor for Fe(II) and Fe(III). RSC Adv. 5, 11229–11239 (2015)

    Article  CAS  Google Scholar 

  23. Lashgari, N., Badiei, A., Ziarani, G.M.: A fluorescent sensor for Al(III) and colorimetric sensor for Fe(III) and Fe(II) based on a novel 8-hydroxyquinoline derivative. J. Fluoresc. 26, 1885–1894 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Wang, S., Gwon, S.Y., Kim., S.H.: A highly selective and sensitive colorimetric chemosensor for Fe2+ based on fluoran dye. Spectrochim. Acta A 76, 293–296 (2010)

    Article  CAS  Google Scholar 

  25. You, G.R., Park, G.J., Lee, S.A., Ryu, K.Ym, Kim, C.: Chelate-type schiff base acting as a colorimetric sensor for iron in aqueous solution. Sens. Actuators B 215, 188–195 (2015)

    Article  CAS  Google Scholar 

  26. Kim, Y.S., Lee, J.J., Lee, S.Y., Jo, T.G., Kim, C.: A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorometric detection of Zn(II) in aqueous media. RSC Adv. 6, 61505–61515 (2016)

    Article  CAS  Google Scholar 

  27. Higby, K., Suiter, C.R., Silerkhodr, T.: A comparison between two screening methods for detection of microproteinuria. Am. J. Obstet. Gynecol. 173, 1111–1114 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. Behr, S., Trumel, C., Palanche, F., Braun, J.P.: Assessment of a pyrogallol red technique for total protein measurement in the cerebrospinal fluid of dogs. J. Small Anim. Pract. 44, 530–533 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Ensafi, A.A., Khayamian, T., Khaloo, S.S.: Application of adsorptive cathodic differential pulse stripping method for simultaneous determination of copper and molybdenum using pyrogallol red. Anal. Chim. Acta 505, 201–207 (2004)

    Article  CAS  Google Scholar 

  30. Ivanov, V.M., Mamedov, A.M.: 3,4,5-Trihydroxyfluorones as analytical reagents. J. Anal. Chem. 61, 1040–1062 (2006)

    Article  CAS  Google Scholar 

  31. Pelit, L., Koçak, S., Pelit, F.O., Turkmena, H., Ertas, F.N.: A spectrophotometric method for determination of molybdenum in water samples by using pyrogallol red and a water soluble ionic liquid. Anal. Methods 5, 5792–5798 (2013)

    Article  CAS  Google Scholar 

  32. Atala, E., Velásquez, G., Vergara, C., Mardones, C., Reyes, J., Tapia, R.A., Quina, F., Mendes, M.A., Speisky, H., Lissi, E., Ureta-Zañartu, M.S., Aspée, A., López-Alarcón, C.: Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study. J. Phys. Chem. B 117, 4870–4879 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. Butler, G.B., Angelo, R.J.: Preparation and polymerization of unsaturated quaternary ammonium compounds VIII A proposed alternating intramolecular-intermolecular chain propagation. J. Am. Chem. Soc. 79, 3128–3131 (1957)

    Article  CAS  Google Scholar 

  34. Assem, Y., Chaffey-Millar, H., Barner-Kowollik, C., Wegner, G., Agarwal, S.: Controlled/living ring-closing cyclopolymerization of diallyldimethylammonium chloride via the reversible addition fragmentation chain transfer process. Macromolecules 40, 3907–3913 (2007)

    Article  CAS  Google Scholar 

  35. Wang, Y., Chen, J., Jiao, H., Chen, Y., Li, W., Zhang, Q., Yu, C.: Polymer-templated perylene-probe noncovalent self-assembly: a new strategy for label-free ultrasensitive fluorescence turn-on biosensing. Chem. Eur. J. 19, 12846–12852 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Dubas, S.T., Limsavarn, L., Iamsamai, C., Potiyaraj, P.: Assembly of polyelectrolyte multilayers on nylon fibers. J. Appl. Polym. Sci. 101, 3286–3290 (2006)

    Article  CAS  Google Scholar 

  37. Cheng, K.L.: EDTA as masking agent in selective spectrophotometric determination of copper with triethenetetramine: an interpretation of masking. Anal. Chem. 34, 1392–1396 (1962)

    Article  CAS  Google Scholar 

  38. Zhou, X., Lu, Y., Zhu, J.F., Chan, W.H., Lee, A.W.M., Chan, P.S., Wong, R.N.S., Mak, N.K.: Ratiometric fluorescent Zn2+ chemosensor constructed by appending a pair of carboxamidoquinoline on 1,2-diaminocyclohexane scaffold. Tetrahedron 67, 3412–3419 (2011)

    Article  CAS  Google Scholar 

  39. Repo, E., Warchoł, J.K., Bhatnagar, A., Sillanpää, M.: Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J. Colloid Interface Sci. 358, 261–267 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Chen, H., Cutright, T.: EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45, 21–28 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Okemgbo, A.A., Hill, H.H., Metcalf, S.G., Bachelor, M.: Metal ion interferences in reverse polarity capillary zone electrophoretic analysis of Hanford Defense Waste for ethylenediaminetetraacetic acid (EDTA) and n-hydroxyethylethylenediaminetriacetic acid (HEDTA). Anal. Chim. Acta 396, 105–116 (1999)

    Article  CAS  Google Scholar 

  42. Gonzalez, D., Obrador, A., Alvarez, J.M.: Behavior of zinc from six organic fertilizers applied to a navy bean crop grown in a calcareous soil. J. Agric. Food Chem. 55, 7084–7092 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. Sakamaki, M., Aikawa, S., Fukushima, Y.: Colorimetric chemosensor for Zn2+ based on pyrogallol red and poly(diallyldimethylammonium chloride) in aqueous solution. Polym. Bull. 75, 1667–1680 (2018)

    Article  CAS  Google Scholar 

  44. Irving, H.M.N.H., Freiser, H., West, T.S.: IUPAC Compendium of Analytical Nomenclature, Definitive Rules. Pergamon Press, Oxford (1978)

    Google Scholar 

  45. Wang, M., Wang, J., Xue, W., Wu, A.: A benzimidazole-based ratiometric fluorescent sensor for Cr3+ and Fe3+ in aqueous solution. Dyes Pigments 97, 475–480 (2013)

    Article  CAS  Google Scholar 

  46. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  47. Grynkiewicz, G., Poenie, M., Tsien, R.Y.: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985)

    CAS  PubMed  Google Scholar 

  48. Kim, H., Na, Y.J., Song, E.J., Kim, K.B., Bae, J.M., Kim, C.: A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe2+ and Cu2+ in aqueous media. RSC Adv. 4, 22463–22469 (2014)

    Article  CAS  Google Scholar 

  49. Sen, S., Sarkar, S., Chattopadhyay, B., Moirangthem, A., Basu, A., Dharad, K., Chattopadhyay, P.: A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137, 3335–3342 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Fukushima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Aikawa, S., Masaru, S. et al. Colorimetric chemosensor for Fe2+ and Fe3+ based on a ternary mixture of an anionic dye, a cationic polyelectrolyte, and a metal chelator in aqueous solution. J Incl Phenom Macrocycl Chem 91, 171–177 (2018). https://doi.org/10.1007/s10847-018-0812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0812-2

Keywords

Navigation