Skip to main content
Log in

Validating observer based on-line slip estimation for improved navigation by a mobile robot

  • Short Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Wheel-slippage is a crucial but one of the marginally attended subjects regarding indoor navigation. Uncompensated slippage has the potential to introduce serious consequences in the form of safety-violation while manipulating obstacles and degraded performance when the vehicle is subjected to tracking and interception. This paper aims at establishing an alternative approach to dynamic modeling and robust control by proposing online estimation of slip parameters and modifying the kinematic model such that it is capable to accommodate slip-disturbance inputs. This approach works in a minimally invasive way, without interfering with or replacing the existing controller. The proposed approach has a low computational requirement and can be easily implemented without any major changes in the control architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Amarante, R.M., Fujarra, A.L.C.: Low-cost experimental apparatus for motion tracking based on image processing and camera calibration techniques. Springer Nat. Appl. Sci. 2, 1511–1522 (2020)

    Google Scholar 

  • Berntorp, K.: Particle filter for combined wheel-slip and vehicle-motion estimation. In: American Control Conference (ACC), pp. 5414–5419 (2015)

  • Bonnabel, S., Barrau, A.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control Inst. Electr. Electron. Eng. 62(4), 1797–1812 (2017)

    MathSciNet  MATH  Google Scholar 

  • Boutayeb, M., Rafaralahy, H., Darouach, M.: Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Trans. Autom. Control 42(4), 581–586 (1997)

    Article  MathSciNet  Google Scholar 

  • Chang, S.: A deep learning approach for localization systems of high-speed objects. IEEE Access 7, 96521–96530 (2019)

    Article  Google Scholar 

  • Corno, M., Panzani, G., Savaresi, S.M.: Traction-control-oriented state estimation for motorcycles. IEEE Trans. Control Syst. Technol. 21(6), 2400–2407 (2013)

    Article  Google Scholar 

  • Cui, M.: Observer based adaptive tracking control of wheeled mobile-robots with unknown slipping parameters. IEEE Access 7, 169646–169655 (2019)

    Article  Google Scholar 

  • Davison, D.E., Kabamba, P.T., Meerkov, S.M.: Limitations of disturbance rejection in feedback systems with finite bandwidth. IEEE Trans. Autom. Control 44(6), 1132–1144 (1999)

    Article  MathSciNet  Google Scholar 

  • Fontanelli, D., Shamsfakhr, F., Macii, D., Palopoli, L.: An uncertainty-driven and observability-based state estimator for nonholonmic robots. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)

    Google Scholar 

  • Frazzoli, E., Daleh, M.: Observers, model based controllers. In: 6.241J Lectures on Dynamic Systems and Control. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA, Spring (2011)

  • Fusini, L., Hosen, J., Helgesen, H.H., Johansen, T.A., Fossen, T.I.: Experimental Validation of a Uniformly Semi-Globally Exponentially Stable Non-Linear Observers for GNSS and Camera-Aided Inertial Navigation for Fixed-Wing UAVs. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 851–860 (2015)

  • Geng, C., Uchida, T., Hori, Y.: Body slip angle estimation and control for electric vehicle with in-wheel motors. In: 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON, pp. 351–355 (2007)

  • Gillespie, T.D.: Premier Series. SAE International (1992)

  • InvenSense. https://www.github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050. Accessed 13 Oct 2020

  • Karnopp, D.: Mechanical Engineering. CRC Press, Boca Raton (2013)

    Google Scholar 

  • Katriniok, A., Abel, D.: Adaptive EKF-based vehicle state estimation with online assessment of local observability. IEEE Trans. Control Syst. Technol. 24(4), 1368–1381 (2016)

    Article  Google Scholar 

  • Lai, Y.C., Le, T.Q.: Adaptive learning based observer with dynamic inversion for the autonomous flight of an unmanned helicopter. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1803–1814 (2021)

    Article  Google Scholar 

  • Lhomme-Desages, D., Grand, C., Amar, F.B., Guinot, J.: Doppler-based ground speed sensor fusion and slip control for a wheeled rover. IEEE/ASME Trans. Mechatron. 14(4), 484–492 (2009)

    Article  Google Scholar 

  • Liao, Y., Berrelli, F.: An adaptive approach to real-time estimation of vehicle sideslip, road bank angles and sensor bias. IEEE Trans. Veh. Technol. 68(8), 7443–7454 (2019)

    Article  Google Scholar 

  • Masirap, M., Amaran, M.H., Yussoff, Y.M., Rahman, R.A., Hashim, H.: Evaluation of reliable UDP-based transport protocols for internet of things (IoT). Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics, pp. 200–205, Malaysia, May 30–1 (2016)

  • MobileRobotics. https://www.generationrobots.com/media/Patrolbot-PTLB-RevA.pdf. Accessed 16 Mar 2020

  • Ogata, K.: PHI Private Limited (2009)

  • Oniz, Y., Kayacan, E., Kaynak, O.: A dynamic method to forecast the wheel slip for antilock braking system and its experimental evaluation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 551–560 (2009)

    Article  Google Scholar 

  • Pretagostini, F., Ferranti, L., Berardo, G., Ivanov, V., Shyrokau, B.: Survey on wheel slip control design strategies, evaluation and application to antilock braking systems. IEEE Access 8, 10951–10970 (2020)

    Article  Google Scholar 

  • Selmanaj, D., Corno, M., Panzani, G., Savaresi, S.M.: Vehicle sideslip estimation: a kinematic based approach. Control Eng. Pract. 67, 1–12 (2017)

    Article  Google Scholar 

  • Shang, C., Liu, D., Yang, Q., Fang, H.: Responsiveness analysis of classic and observer-based leader-follower systems. IEEE Trans. Control Netw. Syst. 8(3), 1239–1248 (2021)

    Article  MathSciNet  Google Scholar 

  • Shimada, A.: Robust localization and position control for mobile robot using EKF with disturbance estimation. In: 12th France–Japan and 10th Europe–Asia Congress on Mechatronics International Conference on Robotics and Bioinformatics (ROBIO), pp. 312–315 (2018)

  • Sun, K., Yu, Y., Zhou, W., Wang, T., Li, Z.: A low-cost and robust optical flow CMOS camera for velocity estimation. In: International Conference on Robotics and Bioinformatics (ROBIO), pp. 1181–1186 (2013)

  • Taghia, J., Katupitiya, J.: A sliding mode controller with disturbance observer for a farm vehicle operating in the presence of wheel slip. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1534–1539 (2013)

  • Unity3d. https://unity3d.com//how-to/create-AR-games-in-Unity-efficiently. Accessed 22 Mar 2020

  • Wang, W., Li, I., Chen, M., Su, S., Hsu, S.: Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy-neural controller. IEEE Trans. Ind. Electron. 56(5), 1746–1756 (2009)

    Article  Google Scholar 

  • Yi, B., Zhang, W.: On state observers for nonlinear systems: a new design and a unifying framework. IEEE Trans. Autom. Control 64(3), 1193–1200 (2019)

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Zhao, H., Yuan, L., Chen, H.: Slip ratio estimation for electric vehicle with in-wheel motors based on EKF without detection of vehicle velocity. In: Chinese Control and Decision Conference (CCDC), pp. 4427–4432 (2016)

  • Zhu, W., Lamarche, T.: Velocity estimation by using position and acceleration sensors. IEEE Trans. Ind. Electron. 54(5), 2706–2715 (2007)

    Article  Google Scholar 

  • Zwierzewicz, Z.: Robust and adaptive path following control of an underactuated ship. IEEE Access 8, 120198–120207 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Derivation of slip-ratio propagation model

Representing observed velocity by estimated velocity of the vehicle, \({\hat{v}}\), we can write:

$$\begin{aligned}&\sigma =\frac{|v_{encoder}(t)-{\hat{v}}(t)|}{\max \{v_{encoder}(t),{\hat{v}}(t)\}} \\&\left. \begin{aligned} {\dot{\sigma }}(t)= \frac{d}{dt}\Bigg (\frac{|v_{encoder}(t)-{\hat{v}}(t)|}{v_{encoder}(t)}\Bigg ) ~\text {if} (a)\\ =\frac{d}{dt}\Bigg (\frac{|v_{encoder}(t)-{\hat{v}}(t)|}{{\hat{v}}(t)}\Bigg ) ~\text {if} (b) \end{aligned}\right\} \\&\left. \begin{aligned} {\dot{\sigma }}(t)= \frac{-{\hat{v}}(t)}{v_{encoder}(t)}\frac{{\dot{v}}_{encoder}(t)}{v_{encoder}(t)}+ \frac{\dot{{\hat{v}}}(t)}{v_{encoder}(t)} ~\text {if} (a) \\ = \frac{v_{encoder}(t)}{{\hat{v}}(t)}\frac{\dot{{\hat{v}}}(t)}{{\hat{v}}(t)}- \frac{{\dot{v}}_{encoder}(t)}{{\hat{v}}(t)} ~\text {if} (b) \end{aligned}\right\} \\&\left. \begin{aligned} {\dot{\sigma }}(t)= (\sigma (t)-1)\Bigg ( \frac{{\dot{v}}_{encoder}(t)}{v_{encoder}(t)}-\frac{\dot{{\hat{v}}}(t)}{{\hat{v}}(t)}\Bigg ) ~\text {if} (a)\\ = (\sigma (t)+1)\Bigg (\frac{\dot{{\hat{v}}}(t)}{{\hat{v}}(t)} - \frac{{\dot{v}}_{encoder}(t)}{v_{encoder}(t)}\Bigg ) ~\text {if} (b) \end{aligned}\right\} \end{aligned}$$

where, \((a) : v_{encoder}(t)>{\hat{v}}(t)\) and \((b) : v_{encoder}(t)<{\hat{v}}(t)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Kar, I. Validating observer based on-line slip estimation for improved navigation by a mobile robot. Int J Intell Robot Appl 6, 564–575 (2022). https://doi.org/10.1007/s41315-021-00216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00216-w

Keywords

Navigation