Skip to main content
Log in

Application and Evaluation of Image-based Information Acquisition in Railway Transportation

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In railway transportation, the information is provided in literature and graphic styles. Generally, quite a lot information can not be obtained directly from the images. As a result, an artificial intelligence system, which can obtain information and perceive the environment, has to be established. In the driving equipment monitoring system, there is a lack of comprehensive analysis and utilization of the multiple monitoring data. This paper briefly introduces the research ideas and optimization directions of image-based data acquiring, such as template matching, support vector machine (SVM), and convolutional neural network (CNN) from the perspective of image detection. Then the characteristics, application scenarios, and possible future research directions of these three types of algorithms are compared and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ranjan, R, Patel, VM, Chellappa, R: Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition[J]. IEEE Trans Pattern Anal Mach Intell 41(1), 121–135 (2017)

    Article  Google Scholar 

  2. He, R, Wu, X, Sun, Z, et al: Wasserstein CNN: Learning invariant features for nirvis face recognition[J]. IEEE Trans Pattern Anal Mach Intell 41(7), 1761–1773 (2018)

    Article  Google Scholar 

  3. Braun, M, Krebs, S, Flohr, F, et al: Eurocity persons: A novel benchmark for person detection in traffic scenes[J]. IEEE Trans Pattern Anal Mach Intell 41(8), 1844–1861 (2019)

    Article  Google Scholar 

  4. Barz, B, Rodner, E, Garcia, YG, et al: Detecting regions of maximal divergence for spatio-temporal anomaly detection[J]. IEEE Trans Pattern Anal Mach Intell 41(5), 1088–1101 (2018)

    Article  Google Scholar 

  5. Sabokrou, M, Fathy, M, Hoseini, M: Video anomaly detection and localisation based on the sparsity and reconstruction error of auto-encoder[J]. Electron. Lett. 52(13), 1122–1124 (2016)

    Article  Google Scholar 

  6. Li H, Wang, P, Shen, C: Toward end-to-end car license plate detection and recognition with deep neural networks[J]. IEEE Trans Intell Transp Syst 20(3), 1126–1136 (2018)

    Article  Google Scholar 

  7. Shivakumara, P, Tang, D, Asadzadehkaljahi, M, et al: CNN-RNN based method for license plate recognition[J]. CAAI Trans Intell. Technol. 3(3), 169–175 (2018)

    Article  Google Scholar 

  8. Lu, W, Zhou, Y, Wan, G, et al: L3-net: Towards learning based lidar localization for autonomous driving[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6389–6398 (2019)

  9. Arcos-García, Á, Alvarez-Garcia, JA, Soria-Morillo, LM: Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods[J]. Neural Netw. 99, 158–165 (2018)

    Article  Google Scholar 

  10. Zhou, S, Liang, W, Li, J, et al: Improved VGG model for road traffic sign recognition[J]. Computers, Materials and Continua 57(1), 11–24 (2018)

    Article  Google Scholar 

  11. Li, L, Xu, M, Wang, X, et al: Attention based glaucoma detection: A large-scale database and cnn model[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10571–10580 (2019)

  12. Liu Q, Fang, L, Yu, G, et al: Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data[J]. Nature Commun 10(1), 1–11 (2019)

    Google Scholar 

  13. Li, Q, Ren, S: A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Trans Ins Meas 61(8), 2189–2199 (2012)

    Article  Google Scholar 

  14. Han, Y, Liu, Z, Han, Z, et al: Research on detection of ear piece fracture of catenary support device of high-speed railway based on SIFT feature matching[J]. J China Railw Soc 36(2), 31–36 (2014)

    Google Scholar 

  15. Liu, L , Zhou, F, He, Y: Automated status inspection of fastening bolts on freight trains using a machine vision approach[J]. In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, pp 1629–1641 (2016)

  16. Liu, L, Zhou, F, He, Y: Automated visual inspection system for bogie block key under complex freight train environment[J]. IEEE Trans Instrum Meas 65(1), 2–14 (2015)

    Article  Google Scholar 

  17. Sun, J, Xiao, Z, Xie, Y: Automatic multi-fault recognition in TFDS based on convolutional neural network[J]. Neurocomputing 222, 127–136 (2017)

    Article  Google Scholar 

  18. Ke, Y, Sukthankar, R: PCA-SIFT: A more distinctive representation for local image descriptors[C]. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2004. IEEE, 2004, vol. 2, pp II–II (2004)

  19. Bay H, Tuytelaars T, Van Gool L: Surf: Speeded up robust features[C] European Conference on Computer Vision, pp 404–417. Springer, Heidelberg (2006)

    Google Scholar 

  20. Liu, L, Peng, F, Zhao, K, et al: Simplified SIFT algorithm for fast image matching[J]. Infrared Laser Eng 37(1), 181–184 (2008)

    Google Scholar 

  21. Abdel-Hakim, AE, Farag, AA: CSIFT: A SIFT descriptor with color invariant characteristics[C]. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). Ieee, vol. 2, pp 1978–1983 (2006)

  22. Mikolajczyk, K, Schmid, C: A performance evaluation of local descriptors[J]. IEEE Trans Pattern Anal Mach Intell 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  23. Scovanner, P, Ali, S, Shah, M: A 3-dimensional sift descriptor and its application to action recognition[C]. In: Proceedings of the 15th ACM International Conference on Multimedia, pp 357–360 (2007)

  24. Dalal, N, Triggs, B: Histograms of oriented gradients for human detection[C]. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, vol. 1, pp 886–893 (2005)

  25. Mortensen, EN, Deng, H, Shapiro, L: A SIFT descriptor with global Context[C]. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, vol. 1, pp 184–190 (2005)

  26. Feng, W, Liu, B: Research on improved SIFT algorithm for image matching[J]. Comput Eng Appl 54(03), 200–205 + 232 (2018)

    Google Scholar 

  27. Zhou, X, Wang, K, Fu, J: A method of SIFT simplifying and matching algorithm improvement[C]. In: 2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. IEEE, pp 73–77 (2016)

  28. Zhou, D, Wu, Y, Yao, Yu: Medical image retrieval based on feature fusion of global feature and scale-invariant feature conversion[J]. J Comput Appl 35(04), 1097–1100 + 1105 (2015)

    Google Scholar 

  29. Geng, Q, Zhao, H, Wang, Y, Zhao, H: Licence plate recognition based on improved SIFT feature extraction[J]. Opt Precis Eng 26(05), 1267–1274 (2018)

    Article  Google Scholar 

  30. Lu, WX, Li, C: Forecasting of short-time tourist flow based on improved PSO algorithm optimized LSSVM model[J]. Comput Eng Appl 55(18), 247–255 (2019)

    Google Scholar 

  31. Cong, YL, Wang, JW, Li, XL: Traffic flow forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J]. Procedia Engineering 137(1), 59–68 (2016)

    Article  Google Scholar 

  32. Fang, Z, Yu, B, Xiao, W, et al: Identifying travel mode with GPS data using support vector machines and genetic algorithm[J]. Information 6(2), 212–227 (2015)

    Article  Google Scholar 

  33. Polat, K, Güneş S: A novel hybrid intelligent method based on C4. 5 decision tree classifier and one-against-all approach for multi-class classification problems[J]. Expert Syst Appl 36(2), 1587–1592 (2009)

    Article  Google Scholar 

  34. Chaudhuri, A, De, K, Chatterjee, D: A comparative study of kernels for the multi-class support vector machine[C]. In: 2008 Fourth International Conference on Natural Computation. IEEE, vol. 2, pp 3–7 (2008)

  35. Manikandan, J, Venkataramani, B: Study and evaluation of a multi-class SVM classifier using diminishing learning technique[J]. Neurocomputing 73(10-12), 1676–1685 (2010)

    Article  Google Scholar 

  36. Wu, D: Research on intelligent aided quality diagnosis based on multi-class support vector machines[J]. J Syst Simul 21(6), 1689–1693 (2009)

    Google Scholar 

  37. Xue, N: Comparative research on multi-class support vector machine classifier[J]. Compu Eng Design 32(5), 1792–1795 (2011)

    Google Scholar 

  38. Lin, CF, Wang, SD: Fuzzy support vector machines[J]. IEEE Trans Neural Netw 13(2), 464–471 (2002)

    Article  Google Scholar 

  39. Liu, Y, Huang, H: Fuzzy support vector machines for pattern recognition and data mining[J]. Int J Fuzzy Syst 4(3), 826–835 (2002)

    MathSciNet  Google Scholar 

  40. Samma, H, Lim, CP, Saleh, JM, et al: A memetic-based fuzzy support vector machine model and its application to license plate recognition[J]. Memetic Computing 8(3), 235–251 (2016)

    Article  Google Scholar 

  41. Niu, XX, Suen, CY: A novel hybrid CNN–SVM classifier for recognizing handwritten digits[J]. Pattern Recognit 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  42. Zhu, L, Chen, L, Zhao, D, et al: Emotion recognition from Chinese speech for smart affective services using a combination of SVM and DBN[j]. Sensors 17(7), 1694 (2017)

    Article  Google Scholar 

  43. Girshick, R, Donahue, J, Darrell, T, et al: Rich feature hierarchies for accurate object detection and semantic segmentation[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587 (2014)

  44. He, K, Zhang, X, Ren, S, et al: Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  45. Girshick, R: Fast r-cnn[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1440–1448 (2015)

  46. Ren S, He, K, Girshick, R, et al: Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  47. He, K, Gkioxari, G, Dollár, P, et al: Mask R-CNN[C]. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969 (2017)

  48. Redmon, J, Divvala, S, Girshick, R, et al: You only look once: Unified, real-time object detection[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 779–788 (2016)

  49. Redmon, J, Farhadi, A: YOLO9000: better, faster, stronger[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7263–7271 (2017)

  50. Redmon, J, Farhadi, A: Yolov3:, An incremental improvement[J]. arXiv:1804.02767(2018)

  51. Bochkovskiy, A, Wang, CY, Liao, HYM: Yolov4:, Optimal speed and accuracy of object detection[J]. arXiv:2004.10934 (2020)

  52. Wang, X, Liu, M, Raychaudhuri, DS, et al: Learning person re-identification models from videos with weak supervision[J]. IEEE Trans. Image Process. 30, 3017–3028 (2021)

    Article  Google Scholar 

  53. Liu, W, Anguelov, D, Erhan, D, et al: Ssd: Single shot multibox detector[C] European Conference on Computer Vision, pp 21–37. Springer, Cham (2016)

    Google Scholar 

  54. Fu, CY, Liu, W, Ranga, A, et al: Dssd:, Deconvolutional single shot detector[J]. arXiv:1701.06659 (2017)

  55. Li, Z, Zhou, F: FSSD:, feature fusion single shot multibox detector[J]. arXiv:1712.00960(2017)

  56. Shen Z, Liu Z, Li J, et al: Dsod: Learning deeply supervised object detectors from scratch[C]. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1919–1927 (2017)

Download references

Funding

This work is supported jointly by the National Natural Science Foundation of China under Grant 61925302, 61903021, and Beijing Natural Science Foundation L211021.

Author information

Authors and Affiliations

Authors

Contributions

Haifeng Song contributes to make the algorithm for target detection and integrate the algorithm to our railway transportation. Xiying Song and Hairong Dong contributes to review the article and supervise our research.

Corresponding author

Correspondence to Hairong Dong.

Ethics declarations

Consent for Publication

The authors declare that they consent to publish this article.

Conflict of Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Song, X. & Dong, H. Application and Evaluation of Image-based Information Acquisition in Railway Transportation. J Intell Robot Syst 106, 9 (2022). https://doi.org/10.1007/s10846-022-01652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01652-x

Keywords

Navigation