Skip to main content
Log in

Robust and Safe Coordination of Multiple Robotic Manipulators

An Approach Using Modified Avoidance Functions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper develops a strategy for collision avoidance among a system of robotic manipulators by using joint feedback controllers in the joint space, which have a closed form. The joint positions are directly used in computing the joint torques, without any additional intermediate steps for computing shortest distances or gradients of shortest distances between the links. Furthermore the collision avoidance controller can be augmented to any stable controller with different objectives, such as position tracking, velocity consensus etc. We consider set point stabilization as a control objective in this paper, and a Lyapunov based analysis is used to show convergence of the joints to their desired positions while guaranteeing collision avoidance among the links of the manipulators and avoiding deadlocks (unwanted local minima). The proposed control methodology is illustrated using some simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barmish, B.R., WE, S., Leitmann, G.: A note on avoidance control. J. Dyn. Syst. Measur. Control 103(1), 69–70 (1981)

    Article  MathSciNet  Google Scholar 

  2. Brock, O., Khatib, O.: Mobile manipulation: Collision-free path modification and motion coordination. In: Proceedings of the Second International Conference on Computational Engineering in Systems Applications, vol. 4, pp. 839–845. Hammamet, Tunisia (1998)

  3. Brock, O., Khatib, O.: Real-time obstacle avoidance and motion coordination in a multi-robot workcell. In: ISATP, pp. 274–279, Porto (1999)

  4. Corless, M., Leitmann, G., Skowronski, J.M.: Adaptive control for avoidance or evasion in an uncertain environment. Comput. Math. Appl. 13, 1–11 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized navigation functions for multiple robotic agents with limited sensing capabilities. J. Intell. Robot. Syst. 48(3), 411–433 (2007)

    Article  Google Scholar 

  6. Glass, K., Colbaugh, R., Lim, D., Seraji, H.: Real-time collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 11(3), 448–457 (1995)

    Article  Google Scholar 

  7. Hokayem, P.F., Stipanovic, D.M., Spong, M.W.: Coordination and collision avoidance for lagrangian systems with disturbances. Appl. Math. Comput. 217(3), 1085–1094 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Hwang, Y., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–32 (1992)

    Article  Google Scholar 

  9. Hwang, Y.K., Ahuja, N.: Gross motion planning-a survey. ACM Comput. Surv. 24(3), 219–291 (1992)

    Article  Google Scholar 

  10. Khalil, H.: Nonlinear systems. Pearson Education. Prentice Hall. ISBN 9780130673893, London (2002)

    MATH  Google Scholar 

  11. Khansari-Zadeh, S.M., Khatib, O.: Learning potential functions from human demonstrations with encapsulated dynamic and compliant behaviors. Autonomous Robots 41, 45–69 (2017). https://doi.org/10.1007/s10514-015-9528-y

    Article  Google Scholar 

  12. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  13. Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings 1988 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1778–1784 (1988). https://doi.org/10.1109/ROBOT.1988.12323

  14. Jo, K., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)

    Article  Google Scholar 

  15. King, H., Kosari, S.N., Hannaford, B.: Kinematic analysis of the raven-ii research surgical robot, s.l.: University of washington electrical engineering. Technical report (2016)

  16. Leitmann, G.: Guaranteed avoidance feedback control. J. Optim. Theory Appl. 25(4), 850–851 (1980)

    MATH  Google Scholar 

  17. Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32(4), 569–576 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory 23, 581–591 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leitmann, G., Skowronski, J.: A note on avoidance control. Opt. Control Appl. Methods 4(4), 335–342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Deka, S.A., Kesavadas, T.: Interactive path planning for a telerobotic surgery training simulator platform. Submitted (2016)

  22. Lin, C.C., Chuang, J.H.: Potential-based path planning for robot manipulators in 3-d workspace. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 3, pp. 3353–3358 (2003)

  23. Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The raven: Design and validation of a telesurgery system. Int. J. Robot. Res. 28(9), 1183–1197 (2009). https://doi.org/10.1177/0278364909101795

    Article  Google Scholar 

  24. Maciejewski, A.A., Klein, C.A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(3), 109–117 (1985)

    Article  Google Scholar 

  25. Mastellone, S., Stipanovic, D.M., Graunke, C., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  26. Munasinghe, S.R., Oh, C., Lee, J.J., Khatib, O.: Obstacle avoidance using velocity dipole field method. In: Proceedings of the International Conference on Control, Automation and Systems, pp. 1657–1661, Gyeonggi-DO (2005)

  27. Pawluszewicz, E., Torres, D.: Avoidance control on time scales. J. Optim. Theory Appl. 145(3), 527–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rahmanian-Shahri, N., Troch, I.: Collision-avoidance for redundant robots through control of the self-motion of the manipulator. J. Intell. Robot. Syst. 16(2), 123–149 (1996)

    Article  Google Scholar 

  29. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 510–518 (1992)

    Article  Google Scholar 

  30. Rodríguez-Seda, E.J, Stipanovic, D.M., Spong, M.W.: Collision avoidance control with sensing uncertainties. s.l. In: Proceedings of the 2011 American Control Conference, pp. 3363–3368. IEEE, San Francisco (2011)

  31. Rodríguez-Seda, E.J., Stipanovic, D.M., Spong, M.W.: Guaranteed collision avoidance for autonomous systems with acceleration constraints and sensing uncertainties. J. Optim. Theory Appl. 168(3), 1014–1038 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rodríguez-Seda, E.J., Tang, C., Spong, M.W., Stipanovic, D.M.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)

    Article  Google Scholar 

  33. Schlegl, T., Kröger, T., Gaschler, A., Khatib, O., Zangl, H.: Virtual whiskers - highly responsive robot collision avoidance. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5373–5379 (2013). https://doi.org/10.1109/IROS.2013.6697134

  34. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Autom. Control 39(9), 1910–1914 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, G.D.: Cooperative avoidance control for multiagent systems. J. Dyn. Syst. Measur. Control 129(5), 699–707 (2007)

    Article  Google Scholar 

  36. Zlajpah, L., Nemec, B.: Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. In: Conference I (ed.) Proceedings of the International Conference on Intellegent Robots and Systems, pp. 1898–1903. IEEE, Switzerland (2002)

Download references

Acknowledgements

This work was partially supported by the National Science Foundation under Award Numbers CNS 13-14891 and CNS 15-45069, and a grant through the JUMP-ARCHES (Applied Research for Community Health through Engineering and Simulation) program for addressing safety and reliability of surgical robots. This project was carried out at the Health Care Engineering Systems Center at Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar A. Deka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, S.A., Li, X., Stipanović, D.M. et al. Robust and Safe Coordination of Multiple Robotic Manipulators. J Intell Robot Syst 90, 419–435 (2018). https://doi.org/10.1007/s10846-017-0699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0699-y

Keywords

Mathematics Subject Classification (2010)

Navigation