Skip to main content
Log in

Intelligent Approaches in Locomotion - A Review

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we review more than 140 publications and try to not only give a snap shot of the current state of the art research in the area, but also to critically analyse and compare different methodologies used in this research field. Among the investigated intelligent approaches for solving locomotion problems are oscillator based Central Pattern Generators, Neural Networks, Hidden Markov models, Rule Based and Fuzzy Logic systems, as well as Analytical concepts. We try to compare those methods based on the quality of the produced solutions in terms of time, stability, correctness and the expense and cost for achieving them. At the end of each section we list the advantages and disadvantages of the reviewed methods and scrutinize them considering the complexity of the approaches, their applicability to the investigated locomotion tasks and the constraints of the produced solutions. The reviewed publications examine a range of legged and non-legged systems, operating in simple and complex environments, with several different locomotion tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ha, T., Choi, C.-H.: An effective trajectory generation method for bipedal walking. Robot. Auton. Syst. 55(10), 795–810 (2007)

    Article  Google Scholar 

  2. Choi, Y., Kim, D., Oh, Y., You, B.-J.: Posture/walking control for humanoid robot based on kinematic resolution of com jacobian with embedded motion. IEEE Trans. Robot. 23(6), 1285–1293 (2007)

    Article  Google Scholar 

  3. Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A biologically inspired biped locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans. Robot. 24(1), 185–191 (2008)

    Article  Google Scholar 

  4. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Trans. Evol. Comput. 6(2), 159–168 (2002)

    Article  Google Scholar 

  5. Xiao, J., Su, J., Cheng, Y., Wang, F., Xu, X.: Research on gait planning of artificial leg based on central pattern generator. In: Chinese Control and Decision Conference. CCDC 2008, pp. 2147–2151 (2008)

  6. Nandi, G.C., Ijspeert, A.J., Chakraborty, P., Nandi, A.: Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology. Robot. Auton. Syst. 57(6–7), 603–616 (2009)

    Article  Google Scholar 

  7. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACMTrans. Graph. 24(3), 697–701 (2005)

    Article  Google Scholar 

  8. Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adapt. Behav. 7(2), 151 (1999)

    Article  Google Scholar 

  9. Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., Akachi, K., Kawasaki, T., Ota, S., Yokoyama, K., Handa, H., Fukase, Y., ichiro Maeda, J., Nakamura, Y., Tachi, S., Inoue, H.: Humanoid robotics platforms developed in HRP. Robot. Auton. Syst. 48(4), 165–175 (2004)

    Article  Google Scholar 

  10. Lachat, D., Crespi, A., Ijspeert, A.J.: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, pp. 643–648 (2006)

  11. Watanabe, K., Tajima, A., Izumi, K.: Locomotion pattern generation of semi-looper type robots using central pattern generators based on van der Pol oscillators. In: 6th IEEE International Conference on Industrial Informatics. INDIN 2008, pp. 377-382 (2008)

  12. Goswami, D., Vadakkepat, P.: Planar bipedal jumping gaits with stable landing. IEEE Trans. Robot. 25(5), 1030–1046 (2009)

    Article  Google Scholar 

  13. Hosoda, K., Takuma, T., Nakamoto, A., Hayashi, S.: Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion. Robot. Auton. Syst. 56(1), 46–53 (2008)

    Article  Google Scholar 

  14. Braun, D.J., Goldfarb, M.: A control approach for actuated dynamic walking in biped robots. IEEE Trans. Robot. 25(6), 1292–1303 (2009)

    Article  Google Scholar 

  15. Asano, F., Yamakita, M., Kamamichi, N., Luo, Z.-W.: A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans. Robot. Autom. 20(3), 565–573 (2004)

    Article  Google Scholar 

  16. Hirukawa, H., Hattori, S., Kajita, S., Harada, K., Kaneko, K., Kanehiro, F., Morisawa, M., Nakaoka, S.: A Pattern Generator of Humanoid Robots Walking on a Rough Terrain. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2181–2187 (2007)

  17. Miossec, S., Aoustin, Y.: A simplified stability study for a biped walk with underactuated and overactuated phases. Int. J. Robot. Res. 24(7), 551 (2005)

    Article  Google Scholar 

  18. Chevallereau, C., Westervelt, E., Grizzle, J.: Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. Int. J. Robot. Res. 24(6), 464 (2005)

    Article  Google Scholar 

  19. Asano, F., Luo, Z.-W., Yamakita, M.: Biped Gait Generation and Control Based on a Unified Property of Passive Dynamic Walking. IEEE Trans. Robot. 21(4), 754–762 (2005)

    Article  Google Scholar 

  20. Reisinger, K.D., Moskowitz, G.D.: Bipedal locomotion: stopping and the standing/balance gait. Int. J. Robot. Res. 18(3), 333 (1999)

    Article  Google Scholar 

  21. Tlalolini, D., Chevallereau, C., Aoustin, Y.: Comparison of different gaits with rotation of the feet for a planar biped. Robot. Auton. Syst. 57(4), 371–383 (2009)

    Article  Google Scholar 

  22. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568–575 (2006)

    Article  Google Scholar 

  23. Asano, F., Luo, Z.-W.: Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robot. 24(6), 1289–1301 (2008)

    Article  Google Scholar 

  24. Kim, Y.-D., Lee, B.-J., Ryu, J.-H., Kim, J.-H.: Landing force control for humanoid robot by time-domain passivity approach . IEEE Trans. Robot. 23(6), 1294–1301 (2007)

    Article  Google Scholar 

  25. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable walking pattern of a humanoid robot by using allowable zmp variation. IEEE Trans. Robot. 24(4), 917–925 (2008)

    Article  Google Scholar 

  26. Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robot. Auton. Syst. 57(8), 839–845 (2009)

    Article  Google Scholar 

  27. Wieber, P.-B., Chevallereau, C.: Online adaptation of reference trajectories for the control of walking systems. Robot. Auton. Syst. 54(7), 559–566 (2006)

    Article  Google Scholar 

  28. Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. 2, 1404–1409 vol. 1402 (2002)

  29. Seipel, J.E., Holmes, P.: Running in three dimensions: analysis of a point-mass sprung-leg model. Int. J. Robot. Res. 24(8), 674 (2005)

    Article  Google Scholar 

  30. Vukobratovic, M., Borovac, B.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  31. Park, J.H.: Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots. Fuzzy Sets Syst. 134(1), 189–203 (2003)

    Article  MATH  Google Scholar 

  32. Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K., Morisawa, M.: A universal stability criterion of the foot contact of legged robots - adios ZMP. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 1976–1983 (2006)

  33. Koyanagi, K., Hirukawa, H., Hattori, S., Morisawa, M., Nakaoka, S., Harada, K., Kajita, S.: A pattern generator of humanoid robots walking on a rough terrain using a handrail. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2008, pp. 2617–2622 (2008)

  34. Hyon, S.-H.: Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)

    Article  Google Scholar 

  35. Mitobe, K., Capi, G., Nasu, Y.: Control of walking robots based on manipulation of the zero moment point. Robotica 18(06), 651–657 (2001)

    Article  Google Scholar 

  36. Furuta, T., Tawara, T., Okumura, Y., Shimizu, M., Tomiyama, K.: Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robot. Auton. Syst. 37(2–3), 81–100 (2001)

    Article  MATH  Google Scholar 

  37. Kajita, S., Yamaura, T., Kobayashi, A.: Dynamic walking control of a biped robot along a potential energy conserving orbit. IEEE Trans. Robot. Autom. 8(4), 431–438 (1992)

    Article  Google Scholar 

  38. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Autom. 6(1), 86–96 (1990)

    Article  Google Scholar 

  39. Dong, H., Zhao, M.G., Zhang, J., Zhang, N.Y.: Hardware design and gait generation of humanoid soccer robot Stepper-3D. Robot. Auton. Syst. 57(8), 828–838 (2009)

    Article  Google Scholar 

  40. Kagami, S., Mochimaru, M., Ehara, Y., Miyata, N., Nishiwaki, K., Kanade, T., Inoue, H.: Measurement and comparison of humanoid H7 walking with human being. Robot. Auton. Syst. 48(4), 177–187 (2004)

    Article  Google Scholar 

  41. Kanehiro, F., Hirukawa, H., Kajita, S.: Openhrp: Open architecture humanoid robotics platform. Int. J. Robot. Res. 23(2), 155 (2004)

    Article  Google Scholar 

  42. Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for humanoid robots by observation. Robot. Auton. Syst. 47(2–3), 93–108 (2004)

    Article  Google Scholar 

  43. Yoo, J.-K., Lee, B.-J., Kim, J.-H.: Recent progress and development of the humanoid robot HanSaRam. Robot. Auton. Syst. 57(10 ), 973–981 (2009)

    Article  Google Scholar 

  44. Ono, K., Takahashi, R., Shimada, T.: Self-excited walking of a biped mechanism. Int. J. Robot. Res. 20(12), 953 (2001)

    Article  Google Scholar 

  45. Ono, K., Furuichi, T., Takahashi, R.: Self-excited walking of a biped mechanism with feet. Int. J. Robot. Res. 23(1), 55 (2004)

    Article  Google Scholar 

  46. Vadakkepat, P., Sin, N.B., Goswami, D., Zhang, R.X., Tan, L.Y.: Soccer playing humanoid robots: Processing architecture, gait generation and vision system. Robot. Auton. Syst. 57(8), 776–785 (2009)

    Article  Google Scholar 

  47. Herr, H.M., McMahon, T.A.: A trotting horse model. Int. J. Robot. Res. 19(6), 566 (2000)

    Article  Google Scholar 

  48. Herr, H.M., McMahon, T.A.: A galloping horse model. Int. J. Robot. Res. 20(1), 26 (2001)

    Article  Google Scholar 

  49. Formal’sky, A., Chevellereau, C., Perrin, B.: On ballistic walking locomotion of a quadruped. Int. J. Robot. Res. 19(8), 743–761 (2000)

    Article  Google Scholar 

  50. Poulakakis, I., Smith, J.A., Buehler, M.: Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot. Int. J. Robot. Res. 24(4), 256 (2005)

    Article  Google Scholar 

  51. Garcia, E., Gonzalez de Santos, P.: On the improvement of walking performance in natural environments by a compliant adaptive gait. IEEE Trans. Robot. 22(6), 1240–1253 (2006)

    Article  Google Scholar 

  52. Albiez, J.C., Luksch, T., Berns, K., Dillmann, R.: Reactive reflex-based control for a four-legged walking machine. Robot. Auton. Syst. 44(3–4), 181–189 (2003)

    Article  Google Scholar 

  53. Raibert, M., Chepponis, M., Brown, H. Jr.: Running on four legs as though they were one. IEEE J. Robot. Autom. 2(2), 70–82 (1986)

    Article  Google Scholar 

  54. Lee, T.-T., Liao, C.-M., Chen, T.K.: On the stability properties of hexapod tripod gait . IEEE J. Robot. Autom. 4(4), 427–434 (1988)

    Article  Google Scholar 

  55. Altendorfer, R., Koditschek, D.E., Holmes, P.: Stability analysis of legged locomotion models by symmetry-factored return maps. Int. J. Robot. Res. 23(10–11), 979 (2004)

    Article  Google Scholar 

  56. Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 536 (2005)

    Article  Google Scholar 

  57. Chevallereau, C., Grizzle, J.W., Shih, C.-L.: Asymptotically stable walking of a five-link underactuated 3-d bipedal robot. IEEE Trans. Robot. 25(1), 37–50 (2009)

    Article  Google Scholar 

  58. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    Article  MathSciNet  Google Scholar 

  59. Westervelt, E., Buche, G., Grizzle, J.: Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559 (2004)

    Article  Google Scholar 

  60. Shapiro, A., Rimon, E., Ohev-Zion, A.: On the mechanics of natural compliance in frictional contacts and its effect on grasp stiffness and stability. Int. J. Robot. Res. 32(4), 425–445 (2013)

    Article  Google Scholar 

  61. Hemker, T., Stelzer, M., von Stryk, O., Sakamoto, H.: Efficient Walking Speed Optimization of a Humanoid Robot. Int. J. Robot. Res. 28(2), 303–314 (2009)

    Article  Google Scholar 

  62. Geva, Y., Shapiro, A.: A combined potential function and graph search approach for free gait generation of quadruped robots. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 5371–5376. IEEE (2012)

  63. Pal, P.K., Jayarajan, K.: Generation of free gait-a graph search approach. IEEE Trans. Robot. Autom. 7(3), 299–305 (1991)

    Article  Google Scholar 

  64. Sznaier, M., Damborg, M.J.: An adaptive controller for a one-legged mobile robot. IEEE Trans. Robot. Autom. 5(2), 253–259 (1989)

    Article  Google Scholar 

  65. Capi, G., Nasu, Y., Barolli, L.: Application of Genetic Algorithms for biped robot gait synthesis optimization during walking and going up-stairs. Adv. Robot. 15(6), 675–694 (2001)

    Article  Google Scholar 

  66. Capi, G., Kaneko, S., Mitobe, K., Barolli, L., Nasu, Y.: Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robot. Auton. Syst. 38(2), 119–128 (2002)

    Article  MATH  Google Scholar 

  67. Capi, G., Nasu, Y., Barolli, L., Mitobe, K.: Real time gait generation for autonomous humanoid robots: A case study for walking. Robot. Auton. Syst. 42(2), 107–116 (2003)

    Article  MATH  Google Scholar 

  68. Feng, K., Chew, C.-M., Hong, G.-S., Zielinska, T.: Bipedal locomotion control using a four-compartmental central pattern generator. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 1513, pp. 1515–1520, (2005)

  69. Komatsu, T., Usui, M.: Dynamic walking and running of a bipedal robot using hybrid central pattern generator method. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 982, pp. 987–992 (2005)

  70. Yuasa, H., Ito, M.: A Theory on Autonomous Distributed Systems with Application to a Gait Pattern Generator of Quadruped. In: American Control Conference, pp. 2268–2273 (1991)

  71. Nakada, K., Asai, T., Amemiya, Y.: An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. IEEE Trans. Neural Netw. 14(5), 1356–1365 (2003)

    Article  Google Scholar 

  72. Asa, K., Ishimura, K., Wada, M.: Behavior transition between biped and quadruped walking by using bifurcation. Robot. Auton. Syst. 57(2), 155–160 (2009)

    Article  Google Scholar 

  73. Bay, J.S., Hemami, H.: Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans. Biomed. Eng. BME 34(4), 297–306 (1987)

    Article  Google Scholar 

  74. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotics and Automation. ICRA 2008, pp. 819–824 (2008)

  75. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 22(3–4), 187 (2003)

    Article  Google Scholar 

  76. Arena, P., Fortuna, L., Frasca, M., Patane, L.: CNN based central pattern generators with sensory feedback. In: Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications. (CNNA 2002), pp. 275–282 (2002)

  77. Feng, H., Wang, R.: Construction of central pattern generator for quadruped locomotion control. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics. AIM 2008, pp. 979–984 (2008)

  78. Liu, C., Chen, Q., Zhang, J.: Coupled Van Der Pol oscillators utilised as Central pattern generators for quadruped locomotion. In: Control and Decision Conference. CCDC ’09, Chinese, pp. 3677–3682 (2009)

  79. Takemura, H., Deguchi, M., Ueda, J., Matsumoto, Y., Ogasawara, T.: Slip-adaptive walk of quadruped robot. Robot. Auton. Syst. 53(2), 124–141 (2005)

    Article  Google Scholar 

  80. Micci-Barreca, D., Ogmen, H.: A central pattern generator for insect gait production. In: From Perception to Action Conference. Proceedings, pp. 348–351 (1994)

  81. Klaassen, B., Linnemann, R., Spenneberg, D., Kirchner, F.: Biomimetic walking robot SCORPION: Control and modeling. Robot. Auton. Syst. 41(2–3), 69–76 (2002)

    Article  Google Scholar 

  82. Zhao, W., Yu, J., Fang, Y., Wang, L.: Development of Multi-mode Biomimetic Robotic Fish Based on Central Pattern Generator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3891–3896 (2006)

  83. McIsaac, K.A., Ostrowski, J.P.: Experimental verification of open-loop control for an underwater eel-like robot. Int. J. Robot. Res. 21(10–11), 849 (2002)

    Article  Google Scholar 

  84. Mehta, V., Brennan, S., Gandhi, F.: Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans. Robot. 24(2), 348–360 (2008)

    Article  Google Scholar 

  85. Ijspeert, A.J., Crespi, A.: Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: IEEE International Conference on Robotics and Automation, pp. 262–268 (2007)

  86. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 1585–1590 (2006)

  87. Geng, T., Porr, B., Worotter, F.: Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning. Int. J. Robot. Res. 25(3), 259 (2006)

    Article  Google Scholar 

  88. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot. Int. J. Robot. Res. 27(2), 213–228 (2008)

    Article  Google Scholar 

  89. Hliot, R., Espiau, B.: Online generation of cyclic leg trajectories synchronized with sensor measurement. Robot. Auton. Syst. 56(5), 410–421 (2008)

    Article  Google Scholar 

  90. Rutishauser, S., Sprowitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using Central Pattern Generators for locomotion control. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. BioRob 2008, pp. 710–715 (2008)

  91. Tanev, I., Ray, T., Buller, A.: Automated Evolutionary Design, Robustness, and Adaptation of Sidewinding Locomotion of a Simulated Snake-Like Robot. IEEE Trans. Robot. 21(4), 632–645 (2005)

    Article  Google Scholar 

  92. Shan, J., Junshi, C., Jiapin, C.: Design of central pattern generator for humanoid robot walking based on multi-objective GA. In: 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2000), Proceedings, vol. 1933, pp. 1930–1935 (2000)

  93. Kim, J.-J., Lee, J.-J.: Gait adaptation method of biped robot for various terrains using central pattern generator (CPG) and learning mechanism. In: International Conference on Control, Automation and Systems. ICCAS ’07, pp. 10–14 (2007)

  94. Wolff, K., Pettersson, J., Heralic, A., Wahde, M.: Structural Evolution of Central Pattern Generators for Bipedal Walking in 3D Simulation. In: IEEE International Conference on Systems, Man and Cybernetics. SMC ’06, pp. 227–234 (2006)

  95. Inada, H., Ishii, K.: Behavior generation of bipedal robot using central pattern generator(CPG) (1st report: CPG parameters searching method by genetic algorithm). In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2003), Proceedings, vol. 2173, pp. 2179–2184 (2003)

  96. Russell, A., Orchard, G., Etienne-Cummings, R.: Configuring of Spiking Central Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms. In: IEEE International Symposium on Circuits and Systems. ISCAS 2007, pp. 1525–1528 (2007)

  97. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402–410 (2005)

    Article  Google Scholar 

  98. Akio, S., Masaki, Y.: Design of a novel central pattern generator and the hebbian motion learning. In: Control Applications, (CCA) & Intelligent Control. (ISIC) 2009, IEEE. pp. 1655–1660 (2009)

  99. Durr, V., Krause, A.F., Schmitz, J., Cruse, H.: Neuroethological concepts and their transfer to walking machines. Int. J. Robot. Res. 22(3–4), 151 (2003)

    Article  Google Scholar 

  100. Manoonpong, P., Wörgötter, F.: Efference copies in neural control of dynamic biped walking. Robot. Auton. Syst. 57(11), 1140–1153 (2009)

    Article  Google Scholar 

  101. Xia, Y., Wang, J., Fok, L.-M.: Grasping-force optimization for multifingered robotic hands using a recurrent neural network. IEEE Trans. Robot. Autom. 20(3), 549–554 (2004)

    Article  Google Scholar 

  102. Srinivasan, S., Gander, R.E., Wood, H.C.: A movement pattern generator model using artificial neural networks. IEEE Trans. Biomed. Eng. 39(7), 716–722 (1992)

    Article  Google Scholar 

  103. Vundavilli, P.R., Pratihar, D.K.: Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robot. Auton. Syst. 58(4), 349–361 (2010)

    Article  Google Scholar 

  104. Gallagher, J.C., Beer, R.D., Espenschied, K.S., Quinn, R.D.: Application of evolved locomotion controllers to a hexapod robot. Robot. Auton. Syst. 19(1), 95–103 (1996)

    Article  Google Scholar 

  105. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1(1), 91–122 (1992)

    Article  Google Scholar 

  106. Petridis, V., Papaikonomou, A.: Recurrent neural networks as pattern generators. In: 1994 IEEE International Conference on Neural Networks. IEEE World Congress on Computational Intelligence, vol. 872, pp. 872-875 (1994)

  107. Ilg, W., Berns, K.: A learning architecture based on reinforcement learning for adaptive control of the walking machine LAURON. Robot. Auton. Syst. 15(4), 321–334 (1995)

    Article  Google Scholar 

  108. Ilg, W., Berns, K., Mhlfriedel, T., Dillmann, R.: Hybrid learning concepts based on self-organizing neural networks for adaptive control of walking machines. Robot. Auton. Syst. 22(3–4), 317–327 (1997)

    Article  Google Scholar 

  109. Benbrahim, H., Franklin, J.A.: Biped dynamic walking using reinforcement learning. Robot. Auton. Syst. 22(3–4), 283–302 (1997)

    Article  Google Scholar 

  110. Sabourin, C., Bruneau, O., Buche, G.: Control strategy for the robust dynamic walk of a biped robot. Int. J. Robot. Res. 25(9), 843–860 (2006)

    Article  Google Scholar 

  111. Sabourin, C., Bruneau, O.: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robot. Auton. Syst. 51(2–3), 81–99 (2005)

    Article  Google Scholar 

  112. Wyffels, F., Schrauwen, B.: Design of a Central Pattern Generator Using Reservoir Computing for Learning Human Motion. In: Advanced Technologies for Enhanced Quality of Life. AT-EQUAL ’09, pp. 118–122 (2009)

  113. Berns, K., Dillmann, R., Piekenbrock, S.: Neural networks for the control of a six-legged walking machine. Robot. Auton. Syst. 14(2–3), 233–244 (1995)

    Article  Google Scholar 

  114. Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embodied symbol emergence based on mimesis theory. Int. J. Robot. Res. 23(4–5), 363 (2004)

    Article  Google Scholar 

  115. Lee, D., Nakamura, Y.: Mimesis model from partial observations for a humanoid robot. Int. J. Robot. Res. 29(1), 60 (2010)

    Article  Google Scholar 

  116. Hohn, O., Gerth, W.: Probabilistic balance monitoring for bipedal robots. Int. J. Robot. Res. 28(2), 245–256 (2009)

    Article  Google Scholar 

  117. Kulic, D., Nakamura, Y.: Incremental learning and memory consolidation of whole body human motion primitives. Adapt. Behav. 17(6), 484 (2009)

    Article  Google Scholar 

  118. Kulic, D., Takano, W., Nakamura, Y.: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. Int. J. Robot. Res. 27(7), 761–784 (2008)

    Article  Google Scholar 

  119. Zhou, C., Ruan, D.: Integration of linguistic and numerical information for biped control. Robot. Auton. Syst. 28(1), 53–70 (1999)

    Article  Google Scholar 

  120. Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets Syst. 134(1), 169–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  121. Zhou, C.: Robot learning with GA-based fuzzy reinforcement learning agents. Inf. Sci. 145(1–2), 45–68 (2002)

    Article  MATH  Google Scholar 

  122. Jha, R.K., Singh, B., Pratihar, D.K.: On-line stable gait generation of a two-legged robot using a genetic-fuzzy system. Robot. Auton. Syst. 53(1), 15–35 (2005)

    Article  Google Scholar 

  123. Pratihar, D.K., Deb, K., Ghosh, A.: Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach. Robot. Auton. Syst. 41(1), 1–20 (2002)

    Article  Google Scholar 

  124. Barfoot, T.D., Earon, E.J.P., D’Eleuterio, G.M.T.: Experiments in learning distributed control for a hexapod robot. Robot. Auton. Syst. 54(10), 864–872 (2006)

    Article  Google Scholar 

  125. Pal, P.K., Kar, D.C.: Gait optimization through search. Int. J. Robot. Res. 19(4), 394 (2000)

    Article  Google Scholar 

  126. McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637–652 (2003)

    Article  Google Scholar 

  127. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523 (1999)

    Article  MathSciNet  Google Scholar 

  128. Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013 (2005)

    Article  Google Scholar 

  129. Grillner, S.: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55(2), 247 (1975)

    Google Scholar 

  130. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), R986–R996 (2001)

    Article  Google Scholar 

  131. Duysens, J., Van de Crommert, H.W.A.A.: Neural control of locomotion; Part 1: The central pattern generator from cats to humans. Gait & Posture 7(2), 131–141 (1998)

    Article  Google Scholar 

  132. MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69 (2002)

    Google Scholar 

  133. Syed, N., Bulloch, A., Lukowiak, K.: In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250(4978), 282 (1990)

    Article  Google Scholar 

  134. Zhu, K., Zhang, D., Lan, L.: On Central Pattern Generator of Biological Motor System. In: 9th International Conference on Control, Automation, Robotics and Vision. ICARCV ’06, pp. 1–5 (2006)

  135. Wu, Q., Liu, C., Zhang, J., Chen, Q.: Survey of locomotion control of legged robots inspired by biological concept. Sci. China Ser. F: Inf. Sci. 52(10), 1715–1729 (2009)

    Article  MATH  Google Scholar 

  136. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  137. Grillner, S., Deliagina, T., Manira, A.E., Hill, R.H., Orlovsky, G.N., Walln, P., Ekeberg, O, Lansner, A.: Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 18(6), 270–279 (1995)

    Article  Google Scholar 

  138. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  139. Lee, W.M., Yam, Y.: Construction of Central Pattern Generator Using Piecewise Affine Systems. In: IEEE International Conference on Control and Automation. ICCA 2007, pp. 1729–1734 (2007)

  140. Grossberg, S., Pribe, C., Cohen, M.A.: Neural control of interlimb oscillations. Biol. Cybernet. 77, 131–140 (1997)

    Article  MATH  Google Scholar 

  141. Zhang, D., Hu, D., Shen, L., Xie, H.: Design of a Central Pattern Generator for Bionic-robot Joint with Angular Frequency Modulation. In: IEEE International Conference on Robotics and Biomimetics. ROBIO ’06, pp. 1664–1669 (2006)

  142. Albus, J.S.: A new approach to manipulator control: The cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control. 97(3), 220–227 (1975)

    Article  MATH  Google Scholar 

  143. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  144. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Stat. 41(1), 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  145. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, J., Jordanov, I. Intelligent Approaches in Locomotion - A Review. J Intell Robot Syst 80, 255–277 (2015). https://doi.org/10.1007/s10846-014-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0149-z

Keywords

Mathematics Subject Classifications (2010)

Navigation