Skip to main content

Advertisement

Log in

Effects of habitat type change on taxonomic and functional composition of orchid bees (Apidae: Euglossini) in the Brazilian Amazon

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Land use change impact species richness and functional diversity (FD). In the Brazilian Amazon, we examined the impacts of oil palm plantations on orchid bee (Apidae: Euglossini) species using abundance and FD. We collected male orchid bees in oil palm plantation (PALM), legal reserves (LR), and riparian corridors (APP), and then we used morphological and life-history traits to characterize each species. We evaluated differences in bee body size by comparing intertegular span values. We tested the influence of habitat on taxonomic and functional parameters of orchid bees by applying a partial redundancy analysis (pRDA). We contrasted FD by calculating species richness, functional richness, and functional dispersion. We sampled 1176 bees from 30 species in 18 sampling days across 2015 and 2016. Males from PALM were 13.6% bigger than those in LR areas, and bees from APP showed a similar pattern compared to LR and PALM. Less than 15% of the variation in species composition was related to the distance among sampling sites, and 8% was due to habitat structure. In our pRDA, the spatial difference explained 6% of the variation in orchid bee traits, but there were no effects of habitat parameters upon FD. FD was reduced with land use change caused by oil palm plantations. Our findings support the belief that many bees are impacted by cultivated lands. Nevertheless, the functional similarity between LRs and APPs reflects common structural elements between them, although we did not find significant relationship between functional composition and habitat structure that we evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida SM, Silva LC, Cardoso MR, Cerqueira PV, Juen L, Dantas-Santos MP (2016) The effects of oil palm plantations on the functional diversity of Amazonian birds. J Trop Ecol 32:510–525

    Google Scholar 

  • Alves SAO, Amaral WAN, Horbach MA, Antiqueira LMOR, Dias IFS (2013) Indicadores de Sustentabilidade da Agroindústria do dendê no estado do Pará. Energia na Agricultura 28(4):240–246

    Google Scholar 

  • Andrade-Silva ACR, Nemésio A, Oliveira FF, Oliveira FS (2012) Spatial-temporal variation in orchid bee communities (Hymenoptera: Apidae) in remnants of arboreal Caatinga in the Chapada Diamantina region, state of Bahia, Brazil. Neotrop Entomol 41:296–305

    CAS  PubMed  Google Scholar 

  • Armbruster WS (1993) Within-habitat heterogeneity in baiting samples of male euglossine bees: possible causes and implications. Biotropica 25(2):122–128

    Google Scholar 

  • Augusto SC, Garófalo CA (2004) Nesting biology and social structure of Euglossa (Euglossa) townsendi Cockerell (Hymenoptera, Apidae, Euglossini). Insect Soc 51:400–409

    Google Scholar 

  • Benjamin FE, Reilly JR, Winfree R (2014) Pollinator body size mediates the scale at which land use drives crop pollination services. J Appl Ecol 51:440–449

    Google Scholar 

  • Bicalho T, Bessou V, Pacca SA (2016) Land use change within EU sustainability criteria for biofuels: The case of oil palm expansion in the Brazilian Amazon. Renew Energy 89:588–597

    Google Scholar 

  • Boff S, Soro A, Paxton RJ, Alves-dos-Santos I (2014) Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. ‎Conserv Genet 15(5):1123–1135

    CAS  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153:51–68

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R, use R. Springer, New York

    Google Scholar 

  • Braaker S, Obrist MK, Ghazoul J, Moretti M (2017) Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J Anim Ecol 86(3):521–531

    PubMed  Google Scholar 

  • Brasil. Decreto n° 7.172, de 7 de maio de 2010 (2010) Diário Oficial da República Federativa do Brasil, Poder Legislativo, Brasília

  • Brasil. Lei n° 12.651 de 15 de Maio de 2012 (2012) Diário Oficial da República Federativa do Brasil, Poder Legislativo, Brasília.

  • Brito TF, Phifer CC, Knowlton JL, Fiser CM, Becker NM, Barros FC, Contrera FAL, Maués MM, Juen L, Montag LFA, Webster CR, Flaspohler DJ, Santos MPD, Silva DP (2017) Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie 48(5):575–587

    CAS  Google Scholar 

  • Brosi BJ (2009) The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol Conserv 142:414–423

    Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45(3):773–783

    Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    CAS  PubMed  Google Scholar 

  • Cameron SA (2004) Phylogeny and biology of neotropical orchid bees (Euglossini). Ann Rev Entomol 49:377–404

    CAS  Google Scholar 

  • Campbell AJ, Carvalheiro LG, Maués MM, Jaffé R, Giannini TC, Freitas MAB, Coelho BWT, Menezes C (2018) Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. J Appl Ecol. https://doi.org/10.1111/1365-2664.13086

    Article  PubMed  Google Scholar 

  • Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). ‎J Kans Entomol Soc 60:145–147

    Google Scholar 

  • Carvalho S, Roat T, Pereira AM, Silva-Zacarin E, Nocelli R, Carvalho C, Malaspina O (2011) Losses of Brazilian bees: an overview of factors that may affect these pollinators. In: 11th international symposium of the ICP-BR Bee Protection Group, Wageningen, 2–4 November 2011, pp 159–166

  • Castilla AR, Pope NS, O’Connell M, Rodriguez MF, Treviño L, Santos A, Jha S (2016) Adding landscape genetics and individual traits to the ecosystem function paradigm reveals the importance of species functional breadth. PNAS 114(48):12761–12766

    Google Scholar 

  • Cavalcante MC, Oliveira F, Maués MM, Freitas BM (2012) Pollination requirements and the foraging behavior of potential pollinators of cultivated Brazil nut (Bertholletia excelsa Bonpl.) trees in Central Amazon Rainforest. Psyche. https://doi.org/10.1155/2012/978019

    Article  Google Scholar 

  • Cernansky R (2017) The biodiversity revolution. Nature 546:22–24

    CAS  PubMed  Google Scholar 

  • Correa FS, Juen L, Rodrigues LC, Silva-Filho HF, Santos-Costa MC (2015) Effects of oil palm plantations on anuran diversity in the Eastern Amazon. Anim Biol 65:321–335

    Google Scholar 

  • Cunha EJ, Montag LFA, Juen L (2015) Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol Indic 52:422–429

    Google Scholar 

  • De Palma A, Kuhlmann M, Roberts SPM, Potts SG, Börger L, Hudson LN, Lysenko I, Newbold T, Purvis A (2015) Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J Appl Ecol 52:1567–1577

    PubMed  PubMed Central  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Google Scholar 

  • Dressler RL (1982a) Biology of the orchid bees (Euglossini). Annu Rev Ecol Evol Syst 13:373–394

    Google Scholar 

  • Dressler RL (1982b) New species of Euglossa (Hymenoptera: Apidae). Rev Biol Trop 30:121–150

    Google Scholar 

  • Embrapa (2010) Zoneamento agroecológico, produção e manejo da cultura de palma de óleo na Amazônia. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Ferreira MG, de Pinho OC, Balestieri JBP, Faccenda O (2011) Fauna and stratification of male Orchid Bees (Hymenoptera: Apidae) and their preference for odor baits in a Forest Fragment. Neotrop Entomol 40(6):639–646

    CAS  PubMed  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers TB, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land-use intensification across multiple taxa. Ecol Lett 12(1):22–33

    PubMed  Google Scholar 

  • Forrest JRK, Thorp RW, Kremen C, Williams NM (2015) Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J Appl Ecol 52:706–715

    Google Scholar 

  • Frazer GW, Canham CD (1999) Gap light analyzer. Simon Fraser University, Burnaby, British Columbia, Canada. Institute of Ecosystem Studies, Millbrook

    Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhöffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyörgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072

    PubMed  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637

    Google Scholar 

  • Giangarelli DC, Aguiar WM, Sofia SH (2014) Orchid bee (Hymenoptera: Apidae: Euglossini) assemblages from three different threatened phytophysiognomies of the subtropical Brazilian Atlantic Forest. Apidologie 46(1):71–83

    Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    PubMed  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, De Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. https://doi.org/10.1371/journal.pone.0185809

    Article  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1971) Euglossine bees as long-distance pollinators. Science 171:203–205

    CAS  PubMed  Google Scholar 

  • Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC (2012) Intensive agriculture erodes beta-diversity at large scales. Ecol Lett 15:963–970

    PubMed  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274:303–313

    Google Scholar 

  • Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    PubMed  Google Scholar 

  • Laliberté E, Wells JA, DeClerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86

    PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1:0–12

    Google Scholar 

  • Lees AC, Moura NG, Almeida AS, Vieira IC (2015) Poor prospects for Avian biodiversity in Amazonian oil palm. PLoS ONE. https://doi.org/10.1371/journal.pone.0122432

    Article  PubMed  PubMed Central  Google Scholar 

  • Livingston G, Philpott SM, de la Mora Rodriguez A (2012) Do species sorting and mass effects drive assembly in tropical agroecological landscape mosaics? Biotropica 45(1):10–17

    Google Scholar 

  • Livingston G, Jha S, Vega A, Gilbert L (2013) Conservation value and permeability of neotropical oil palm landscapes for orchid bees. PLoS ONE. https://doi.org/10.1371/journal.pone.0078523

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovejoy TE, Bierregaard Junior RO, Rylands AB, Malcon JR, Quintela CE, Harper L, Brown Junior KS, Powell AH, Powell GVN, Schubart HOR, Hays MB (1986) Edge and other effects on isolation on Amazon forest fragments. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Press, Massachusetts, pp 257–285

    Google Scholar 

  • Luiza-Andrade A, Brasil LS, Benone NL, Shimano Y, Farias APJ, Montag LFA, Dolédec S, Juen L (2017) Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecol Indic 82:478–483

    Google Scholar 

  • Magalhães JLL, Lopes MA, Queiroz HL (2014) Development of a Flooded Forest Anthropization Index (FFAI) applied to Amazonian areas under pressure from different human activities. Ecol Indic 48:440–447

    Google Scholar 

  • Marques EM, Ranieri VEL (2012) Determinantes da decisão de manter áreas protegidas em terras privadas: o caso das reservas legais do estado de São Paulo. Ambient Soc 15:131–145

    Google Scholar 

  • Mason NWH, Lanoiselee C, Mouillot D, Irz P, Argillier C (2007) Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153:441–452

    PubMed  Google Scholar 

  • Mateus S, Andrade-Silva ACR, Garófalo CA (2015) Diversity and temporal variation in the orchid bee community (Hymenoptera: Apidae) of a remnant of a Neotropical seasonal semi-deciduous forest. Sociobiology 62:571–577

    Google Scholar 

  • May ML, Casey TM (1983) Thermoregulation and heat exchange in Euglossine bees. Physiol Zool 56:541–551

    Google Scholar 

  • Mendes TP, Luiza-Andrade A, Cabette HSR, Juen L (2017) How does environmental variation affect the distribution of dragonfly larvae (Odonata) in the Amazon-Cerrado transition zone in Central Brazil? Neotrop Entomol. https://doi.org/10.1007/s13744-017-0506-2

    Article  PubMed  Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Milet-Pinheiro P, Schlindwein C (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures? Rev Bras Zool 22(4):853–858

    Google Scholar 

  • Mitchell MGE, Suarez-Castro AF, Martinez-Harms M, Maron M, McAlpine C, Gaston KJ, Johansen K, Rhodes JR (2015) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30(4):190–198

    PubMed  Google Scholar 

  • Moretti M, Dias ATC, Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Berg MP (2016) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31(3):558–567

    Google Scholar 

  • Moure JS (2000) As espécies do gênero Eulaema Lepeletier, 1841 (Hymenoptera, Apidae, Euglossinae). Acta Biol Parana 29:1–70

    Google Scholar 

  • Müller AA, Júnior JF, Filho PC (2006a) A Embrapa Amazônia Oriental e o Agronegócio do Dendê no Pará. Embrapa Amazônia Oriental, Belém

    Google Scholar 

  • Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S (2006b) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships. Biol Conserv 130(4):604–615

    Google Scholar 

  • Nemésio A (2009) Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic forest. Zootaxa 2041:1–242

    Google Scholar 

  • Nemésio A (2012) Methodological concerns and challenges in ecological studies with orchid bees (Hymenoptera: Apidae: Euglossina). Biosci J 28:118–135

    Google Scholar 

  • Nemésio A, Morato EF (2004) Euglossina (Hymenoptera: Apidae: Apini) of the Humaitá Reserve, Acre state, Brazilian Amazon, with comments on bait trap efficiency. Rev Tecnol e Ambient 10:71–80

    Google Scholar 

  • Nemésio A, Rasmussen C (2011) Nomenclatural issues in the orchid bees (Hymenoptera: Apidae: Euglossina) and an updated catalogue. Zootaxa 42:1–42

    Google Scholar 

  • Nemésio A, Silveira FA (2006) Edge effects on the orchid bee fauna (Hymenoptera: Apidae) at a large remnant of Atlantic Forest in southeastern Brazil. Neotrop Entomol 35:313–323

    PubMed  Google Scholar 

  • Nemésio A, Silveira FA (2007) Diversity and distribution of orchid bees (Hymenoptera: Apidae) with a revised checklist of species. Neotrop Entomol 36:874–888

    PubMed  Google Scholar 

  • Nemésio A, Vasconcelos HL (2013) Beta diversity of orchid bees in a tropical biodiversity hotspot. Biodiv Conserv 22:1647–1661

    Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: community ecology package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 22 May 2017

  • Oliveira ML (2006) Três novas espécies de abelhas da Amazônia pertencentes ao gênero Eulaema Lepeletier, 1841 (Hymenoptera: Apidae: Euglossini). Acta Amazon 36:121–128

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  • Opedal ØH, Falahati-Anbaran M, Albertsen E, Armbruster WS, Pérez-Barrales R, Stenøien HK, Pélabon C (2016) Euglossine bees mediate only limited long-distance gene flow in a tropical vine. New Phytol 213:1898–1908

    PubMed  Google Scholar 

  • Peruquetti RC (2003) Variação do tamanho corporal de machos de Eulaema nigrita Lepeletier (Hymenoptera, Apidae, Euglossini). Resposta materna à flutuação de recursos? Rev Bras Zool 20(2):207–212

    Google Scholar 

  • Pokorny T, Loose D, Dyker G, Quezada-Euán JJG, Eltz T (2015) Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie 46(2):224–237

    Google Scholar 

  • Powell AH, Powell GVN (1987) Population dynamics of male Euglossine bees in Amazonian forest fragments. Biotropica 19:176–179

    Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rader R, Bartomeus I, Tylianakis JM, Laliberté E (2014) The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. ‎Divers Distrib 20(8):908–917

    Google Scholar 

  • Ramírez S, Dressler RL, Ospina M (2002) Abejas euglosinas (Hymenoptera: Apidae) de la Region Neotropical: Listado de especies con notas sobre su biologia. Biota Colombiana 3:7–118

    Google Scholar 

  • Ramírez SR, Roubik DW, Skov C, Pierce NE (2010) Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol J Linn Soc 100:552–572

    Google Scholar 

  • Raw A (1989) The dispersal of Euglossine bees between isolated patches of eastern Brazilian wet forest (Hymenoptera, Apidae). Rev Bras Entomol 33:103–107

    Google Scholar 

  • Roberts HP, King DI, Milam J (2017) Factors affecting bee communities in forest openings and adjacent mature forest. ‎For Ecol Manag 394:111–122

    Google Scholar 

  • Rocha-Filho LC, Krug C, Silva CI, Garófalo CA (2012) Floral resources used by Euglossini Bees (Hymenoptera: Apidae) in coastal ecosystems of the Atlantic Forest. Psyche. https://doi.org/10.1155/2012/934951

    Article  Google Scholar 

  • Roubik DW (2004) Long-term studies of solitary bees: what the orchid bees are telling us. In: Freitas BM, Pereira JO (eds) Solitary bees? Conservation, rearing, management for pollination. Imprensa Universitária, Fortaleza, pp 97–103

    Google Scholar 

  • Silva FS, Rebêlo JMM (2002) Population dynamics of Euglossinae bees (Hymenoptera, Apidae) in an early second- growth forest of Cajual Island, in the state of Maranhão, Brazil. Braz J Biol 62(1):15–23

    CAS  PubMed  Google Scholar 

  • Silva MC, Lomônaco C, Augusto SC, Kerr WE (2009) Climatic and anthropic influence on size and fluctuating asymmetry of Euglossine bees (Hymenoptera, Apidae) in a semideciduous seasonal forest reserve. Genet Mol Res 8(2):730–737

    CAS  PubMed  Google Scholar 

  • Silva DP, Nogueira DS, De Marco Jr P (2017) Contrasting patterns in solitary and eusocial bees while responding to landscape features in the Brazilian Cerrado: a multiscaled perspective. Neotrop Entomol 46:264–274

    CAS  PubMed  Google Scholar 

  • Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM, Schoereder JH, Vieira ICG, Mac Nally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118

    PubMed  Google Scholar 

  • Solar RRC, Barlow J, Andersen AN, Schoereder JH, Berenguer E, Ferreira JN, Gardner TA (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107

    Google Scholar 

  • Solís-Montero L, Vergara CH, Vallejo-Marín M (2015) High incidence of pollen theft in natural populations of a buzz-pollinated plant. Arthropod-Plant Interact 9:599–611

    Google Scholar 

  • Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW (1991) Range perception through apparent image speed in freely flying honeybees. Vis Neurosci 6:519–535

    CAS  PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    CAS  PubMed  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Google Scholar 

  • Storck-Tonon D, Peres CA (2017) Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol Conserv 214:270–277

    Google Scholar 

  • Storck-Tonon D, Morato EF, Oliveira ML (2009) Fauna de Euglossina (Hymenoptera: Apidae) na Amazônia Sul-Ocidental. Acre Brasil Acta Amazon 39(3):693–706

    Google Scholar 

  • Storck-Tonon D, Morato EF, Melo AWF, Oliveira ML (2013) Orchid bees of forest fragments in Southwestern Amazonia. Biota Neotrop 13:133–141

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    CAS  Google Scholar 

  • Tonhasca A, Albuquerque GS, Blackmer JL (2003) Dispersal of Euglossine bees between fragments of the Brazilian Atlantic Forest. J Trop Ecol 19:99–102

    Google Scholar 

  • Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95(3):565–573

    Google Scholar 

  • Viana BF, Melo AMC, Drumond PD (2006) Variação na estrutura do habitat afetando a composição de abelhas e vespas solitárias em remanescentes florestais urbanos de Mata Atlântica no Nordeste do Brasil. Sitientibus Série Ciências Biológicas 6(4):282–295

    Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    CAS  PubMed  Google Scholar 

  • Wikelski M, Moxley J, Eaton-Mordas A, López-Uribe MM, Holland R, Moskowitz D, Roubik DW, Kays R (2010) Large-range movements of Neotropical orchid bees observed via radio telemetry. PLoS ONE. https://doi.org/10.1371/journal.pone.0010738

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Google Scholar 

  • Wilsey BJ (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184

    Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, Lebuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8):2068–2076

    PubMed  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst: 42:1–22

    Google Scholar 

  • Wooton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140

    Google Scholar 

  • Zucchi R, Sakagami SF, de Camargo JMF (1969) Biological observations on a neotropical parasocial bee, Eulaema nigrita, with a review on the biology of Euglossinae (Hymenoptera, Apidae). A comparative study. J Fac Sci Hokkaido Univ Ser VI Zool 17:271–380

    Google Scholar 

Download references

Acknowledgements

We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for supporting this research (Grant FAPAC 007/2014 for the first author). Authors CCP and JLK were supported by the National Science Foundation (Award Number 124344). We are indebted to Agropalma Group, especially J. Martins Jr. and P. Gaia, for facilitating our research. The Programa de Pós Graduação em Zoologia at the Universidade Federal do Pará and Conservation International Brazil helped us support and establish this partnership with Agropalma. We also thank J. Gomes and A. Monteiro Jr. for their field assistance, and Dr. F. Roque (UFMS) and Dr. L. Duarte (UFRGS) for their contributions in the text. Lastly, we thank the Brazilian Embrapa Amazônia Oriental and Museu Paraense Emílio Goeldi agencies for their support in identifying the bee specimens and providing the consulting reference collection. We are also grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for granting a PhD scholarship to LSB (Process 140111/2015-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaline F. Brito.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, T.F., Contrera, F.A.L., Phifer, C.C. et al. Effects of habitat type change on taxonomic and functional composition of orchid bees (Apidae: Euglossini) in the Brazilian Amazon. J Insect Conserv 22, 451–463 (2018). https://doi.org/10.1007/s10841-018-0073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0073-9

Keywords

Navigation