Skip to main content
Log in

An Access Mechanism for Embedded Sensors in Modern SoCs

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

With technology scaling, the number of sensors integrated into modern system-on-chip (SoC) designs has increased greatly over the past several years. These sensors must be accessed for a number of reasons (test, configuration, calibration, etc.). This paper proposes a novel sensor access mechanism (SAM) to address sensor access in various operation modes, including manufacturing test mode, functional mode, built-in self-test (BIST) mode, silicon validation mode, and calibration mode. Within this mechanism, we develop a structured and scalable sensor access architecture and a pipeline sensor access flow. The SAM architecture addresses sensor insertion and access in different scenarios, while the pipeline flow is developed by utilizing the features of sensor measurement and hardware architecture to improve the efficiency of sensor access. Moreover, SAM standardizes the testing and measurement of embedded sensors by providing easy and effective access to sensors distributed across the SoC. Further, SAM is JTAG-compatible and practice-oriented for easy industry adoption. Various simulation results, collected by integrating SAM into several benchmarks, demonstrate that sensor controllability and observability can be achieved with high efficiency and low overhead using the proposed architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abuhamdeh Z, Crouch A, Remmers J (2007) A production IR-drop screen on a chip. IEEE Des Test Comput 24(3):216–224

    Article  Google Scholar 

  2. Assoc IEEE (2001) IEEE Std. 1149.1-2001 IEEE standard test access port and Boundary–Scan architecture

  3. IEEE Assoc. (2005) IEEE Std. 1500–2005, IEEE standard testability method for embedded core-based integrated circuits

  4. Couch AL (2007) IJTAG: the path to organized instrument connectivity Proceedings of the IEEE international test conference, pp 1–10

    Google Scholar 

  5. DaSilva F, Zorian Y, Whetsel L, Arabi K, Kapur R (2003) Overview of the IEEE P1500 standard Proceedings of the IEEE international test conference, pp 988–997

    Google Scholar 

  6. Franch R, Restle P, James1 N, Huott2 W, Friedrich1 J, Dixon1 R, Weitzel1 S, Van Goor3 K, Salem4 G (2007) On-chip Timing uncertainty measurements on IBM microprocessors Proceedings of the IEEE international test conference, pp 1–7

  7. Ginosar R (2011) Metastability and synchronizers: a tutorial. IEEE Des Test Comput 28(5):23–35

    Article  Google Scholar 

  8. He MT, Tehranipoor M (2014) SAM: A Comprehensive mechanism for accessing embedded sensors in modern SoCs, pp 240–245

  9. IEEE 1500 web site, http://grouper.ieee.org/groups/1500/

  10. IJTAG (2010) IJTAG–IEEE 1687, http://grouper.ieee.org/groups/1687/

  11. IJTAG (2013) IEEE Draft Standard for Access and Control of Instrumentation Embedded within a Semiconductor Device, IEEE P1687/D1.62, pp 1–266

  12. Jutman A, Shibin K, Devadze S (2016) Reliable health monitoring and fault management infrastructure based on embedded instrumentation and IEEE 1687 Proceedings of the AUTOTESTCON, pp 12–15

    Google Scholar 

  13. Keim M (2012) Welcome to IJTAG: a no-risk path to IEEE P1687, Tech Design Forum, http://www.techdesignforums.com/eda/technique/using-IJTAG-with-jtag-ip-blocks

  14. Keim M (2013) Thinking about adopting IEEE P1687?. IEEE Des Test Comput 30(5):36–43

    Article  Google Scholar 

  15. Keim M, Press R (2012) What’s the difference between JTAG and IJTAG? Electronic Design, http://electronicdesign.com

  16. Keim M, Waayers T, Morren R, Hapke F, Krenz-Baath R (2013) Industrial application of IEEE P1687 for an automotive product Proceedings of the digital system design, pp 453–461

    Google Scholar 

  17. Kim KK, Wang W, Choi K (2010) On-chip aging sensor circuits for reliable nanometer MOSFET digital circuits. IEEE Trans Circuits Syst II, Expr Briefs 57(10):798–802

    Article  Google Scholar 

  18. Larsson E, Zadegan FG (2012) Accessing embedded DfT instruments with IEEE P1687 Proceeding of the IEEE asian test symposium (ATS), pp 71–76

    Google Scholar 

  19. Patterson D (2007) The parallel computing landscape: a Berkeley view Proceedings of the 2007 ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 231–231

    Chapter  Google Scholar 

  20. Portolan M, Van Treuren B, Goyal S (2013) Executing IJTAG: Are vectors enough?. IEEE Des Test Comput 30(5):15–25

  21. Posse K, Crouch AL, Rearick J, Eklow B, Laisne M, Bennetts B, Doege J, Ricchetti M, Cote JF (2006) IEEE P1687: toward standardized access of embedded instrumentation Proceedings of the IEEE international test conference, pp 1–8

    Google Scholar 

  22. Rearick J (2007) Embedded test features for high-speed serial I/O Proceedings of the IEEE custom integrated circuits conference, pp 153–156

    Google Scholar 

  23. Rearick J, Eklow B, Posse K, Couch A, Bennets B (2005) IJTAG (Internal JTAG): a step toward a dft standard Proceedings of the IEEE international test conference

    Google Scholar 

  24. Rearick J, Volz A (2006) A case study of using IEEE P1687 (IJTAG) for high-speed serial I/O characterization and testing Proceedings of the IEEE international test conference, pp 1–8

    Google Scholar 

  25. Sadi M, Tehranipoor M (2016) Design of a network of digital sensor macros for extracting power supply noise profile in SoCs. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(5):1702–1714

    Article  Google Scholar 

  26. Sebastine DR, Raghunathan A, Sebastine A, Abraham JA (2004) On-chip delay measurement for silicon debug

  27. Synopsys Solvnet (2012) BSD Compiler Advanced Features, https://solvnet.synopsys.com/retrieve/029717.html, Doc Id. 029717

  28. Synopsys (2013) BSD compiler reference manual, version H

  29. Tessent IJTAG Technical background, Mentor Graphics

  30. Vermeulen B, Stollon N, Kuhnis R, Swoboda G, Rearick J (2008) Overview of debug standardization activities. IEEE Des Test Comput 25(3):258–267

    Article  Google Scholar 

  31. Wang L-T, Apte R, Wu S, Sheu B, Lee K-J, Wen X, Jone W-B, Yeh C-H, Wang W-S, Chao H-J, Guo J, Liu J, Niu Y, Sung Y-C, Wang C-C, Li F (2008) Turbo1500: toward core-based design for test and diagnosis using the IEEE 1500 standard Proc. IEEE International Test Conference, pp 1–9

    Google Scholar 

  32. Wang S, Tehranipoor M (2014) Light-weight on-chip structure for measuring timing uncertainty induced by noise in integrated circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 22(5):1030–1041

    Article  Google Scholar 

  33. Wang S, Winemberg L, Tehranipoor M (2011) In-field aging measurement and calibration for power-performance optimization Proceedings of the design automation conference, pp 706–711

    Google Scholar 

  34. Wang X, Jiao P, Sadi M, Su D, Winemberg L, Tehranipoor M (2017) TRO: an on-chip ring oscillator-Based GHZ transient IR-drop monitor. IEEE Trans Computer-Aided Design Integr Circuits (CAD) Syst 36(5):855–868

    Article  Google Scholar 

  35. Wang X, Tehranipoor M, George S, Tran D, Winemberg L (2012) Design and analysis of a delay sensor applicable to process/environmental variations and aging measurements. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(8):1405–1418

    Article  Google Scholar 

  36. Wang X, Tran D, George S, Winemberg L, Ahmed N, Palosh S, Dobin A, Tehranipoor M (2012) Radic: a standard–cell–based sensor for on–chip aging and flip–flop metastability measurements Proceedings of the IEEE international test conference, pp 1–9

    Google Scholar 

  37. Wang X, Zhang D, Su D, Winemberg L, Tehranipoor M (2016) A novel peak power supply noise measurement and adaptation system for integrated circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst 24 (5):1715–1727

    Article  Google Scholar 

  38. Wu T -Y, Gharahi S, Abraham JA (2009) An area efficient on-chip static IR drop detector/evaluator Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 2009–2012

    Google Scholar 

  39. Yeh D, Peh L-S, Borkar S, Darringer J, Agarwal A, Hwu W-M (2008) Thousand-core chips. IEEE Des Test Comput 25(3):272–278

    Article  Google Scholar 

  40. Zadegan FG, Ingelsson U, Carlsson G, Larsson E (2011) Design automation for IEEE P1687 Proceedings of the design, automation and test conference (DATE), pp 1–6

    Google Scholar 

  41. Zadegan FG, Ingelsson U, Carlsson G, Larsson E (2012) Access time analysis for IEEE P1687. IEEE Trans Comput 61(10):1459–1472

    Article  MathSciNet  Google Scholar 

  42. Zadegan FG, Ingelsson U, Larsson E, Carlsson G (2012) Reusing and retargeting on–chip instrument access procedures in IEEE P1687. IEEE Des Test Comput 29(2):79–88

    Article  Google Scholar 

  43. Zadegan FG, Nikolov D, Larsson E (2016) In-field system-health monitoring based on IEEE 1687 Proceedings of the IEEE international system-on-chip conference (SOCC)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao (Tony) He.

Additional information

Responsible Editor: V. Champac

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M.(., Tehranipoor, M. An Access Mechanism for Embedded Sensors in Modern SoCs. J Electron Test 33, 397–413 (2017). https://doi.org/10.1007/s10836-017-5669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-017-5669-6

Keywords

Navigation