Skip to main content
Log in

Effects of cobalt nanoparticles addition in Cu0.5Tl0.5-1223 superconductor composite

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Cobalt nanoparticles added Cox/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconducting composites were synthesized by solid-state reaction method and their superconducting properties were reported. The samples exhibit an orthorhombic crystal structure and the volume of the unit cell decreases with the addition of cobalt nanoparticles, indicating that Co+3 ion diffuses from the intergranular region into the unit cells. The suppression of the onset of superconductivity and magnitude of diamagnetism is observed in AC-susceptibility measurements showing magnetic scattering from the charged particles induced by doped Co+3 atoms into the unit cell. The doping of unit cells with Cobalt nanoparticles from the inter-grain regions is confirmed by a shift in the peak position and intensity of various oxygen modes in FTIR absorption measurements. Excess conductivity analysis of conductivity data has shown an increase in the coherence length along the c-axis, the Fermi velocity of the carriers, and the energy required to break the Cooper-pairs with the addition of Co nanoparticles. The observed increase in the values of these parameters is likely associated with an increase in the density of charge carriers in the conducting copper oxide planes. It is suggested to be arising from the magnetic scattering of Co+3 ions diffusing from inter-grain sites in the unit cell. The weak pinning is also witnessed in form of an increase in the London penetration depth and Ginzburg Landau (GL) parameter κ in Co+3 enriched samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. N.A. Khan, A.A. Khurram, Enhanced superconducting properties of Cu1-xTlxBa2Ca2-yMgyCu3O10−δ (y=0, 0.5, 1.0, and 1.5). Appl. Phys. Lett. 86(15), 1–3 (2005)

    Article  Google Scholar 

  2. B. Shabbir, M.I. Malik, N.A. Khan, Effect on diamagnetism and phonon modes due to Mg and Be doping at Ca sites in Cu0.5Tl0.5Ba2Ca3−yMyCu4O12−δ (y = 0 and 1.5 for M = Mg, Be) high-temperature superconductors. J. Supercond. Nov. Magn. 24, 1977 (2011)

    Article  CAS  Google Scholar 

  3. B. Shabbir, A. Ullah, N. Hassan, M. Irfan, N.A. Khan, Suppression of superconductivity due to enhanced Co doping in Cu0.5Tl0.5Ba2Ca2Cu3−yCoyO10−δ superconductors. J. Supercond. Nov. Magn. 24, 1521 (2011)

    Article  CAS  Google Scholar 

  4. M.M. Elkholy, L.M. Sharaf El-Deen, M.M. El-Zaidia, A.A. El-Hamalawy, W.M. Hussain, Response of YBCO superconductor doped with strontium after gamma irradiation. Radiat. Phys. Chem. 47(5), 691 (1996)

    Article  CAS  Google Scholar 

  5. N.A. Khan, N. Baber, M. ZafarIqbal, Simple method for direct synthesis of YBa2Cu4O8 at atmospheric oxygen pressure. Appl. Phys. Lett. 63, 257 (1993)

    Article  CAS  Google Scholar 

  6. S.F. Akhtar, N.A. Khan, S.H. Safeer, Excess conductivity analysis of Y-Ba-Cu–O superconductor phases. J. Low. Temp. Phys. 206, 106–119 (2022)

    Article  CAS  Google Scholar 

  7. Z. Sheng, A. Hermann, Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system. Nature. 332, 138–139 (1988)

    Article  CAS  Google Scholar 

  8. Z. Sheng, A. Hermann, Superconductivity in the rare-earth-free Tl–Ba–Cu–O system above liquid-nitrogen temperature. Nature. 332, 55–58 (1988)

    Article  CAS  Google Scholar 

  9. C.W. Chu, Superconductivity at higher temperatures in the Hg-Ba-Ca-Cu-O compound system. J. Supercond. 7, 1–7 (1994)

    Article  CAS  Google Scholar 

  10. N.A. Khan, S.H. Safeer, A. Raza et al., Flux pinning characteristics and irreversibility field of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ thin films. J. Supercond. Nov. Magn. 32, 1163–1170 (2019)

    Article  CAS  Google Scholar 

  11. B. Shabbir, X. Wang, Y. Ma et al., Study of flux pinning mechanism under hydrostatic pressure in optimally doped (Ba, K)Fe2As2 single crystals. Sci. Rep. 6, 23044 (2016)

    Article  CAS  Google Scholar 

  12. Y. Zhao, C.H. Cheng, J.S. Wang, Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor. Supercond. Sci. Technol. 18(2), S43 (2004)

    Article  Google Scholar 

  13. B. Shabbir, X. Wang, S.R. Ghorbani, C. Shekhar, S. Dou, O.N. Srivastava, Hydrostatic pressure: a very effective approach to significantly enhance critical current density in granular iron pnictide superconductors. Sci. Rep. 5, 8213 (2015)

    Article  CAS  Google Scholar 

  14. N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, A.A. Rizvi, Effect of Sn substitution on the para-conductivity of polycrystalline Cu0.5Tl0.5Ba2Ca2Cu3−ySnyO10−δ superconductors. J. Appl. Phys. 107, 083910 (2010)

    Article  Google Scholar 

  15. N. Loudhaief, M. Ben Salem, M. Zouaoui, Intrinsic properties of nano-CdS-added YBa2Cu3Oy and (Bi, Pb)2Sr2Ca2Cu3Oδ superconductors. J. Low. Temp. Phys. 203, 11–27 (2021)

    Article  CAS  Google Scholar 

  16. W. Kong, C. Jacob, I. Kong, C. Kong, E.H. Yap, R.A. Shukor, Solid. State. Phenom. 307, 98 (2020)

    Article  Google Scholar 

  17. A. Jabbar, I. Qasim, K.M. Khan, Z. Ali, K. Nadeem, M. Mumtaz, J. Alloy. Compd. 618, 110 (2015)

    Article  CAS  Google Scholar 

  18. T. Çördük, Ö. Bilgili, K. Kocabaş, J. Mater. Sci. Mater. Electron. 28, 14689 (2017)

    Article  Google Scholar 

  19. M.U. Muzaffar, S.H. Safeer, N.A. Khan et al., Grain boundary shortening in CuTl-1234 superconductor by the addition of ZnO nanoparticles. J. Supercond. Nov. Magn. 31, 1669–1675 (2018)

    Article  CAS  Google Scholar 

  20. R. Noetzel, B. vom Hedt, K. Westerholt, Magnetic irreversibility lines and critical currents of Bi(2212) single crystals doped by Fe, Ni, Co and Zn. Phys. C. Supercond. 260, 290–296 (1996)

    Article  CAS  Google Scholar 

  21. B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, X.H. Chen, Giant enhancement in critical current density, up to a hundredfold, in superconducting NaFe0.97Co0.03 As single crystals under hydrostatic pressure. Sci. Rep. 5, 10606 (2015)

    Article  CAS  Google Scholar 

  22. B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, X. Wang, Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure. Phys. Rev. Mater. 1, 044805 (2017)

    Article  Google Scholar 

  23. A. Raza, S.H. Safeer, KhanNA, The role of mass of doped atoms in the superconductivity of Cu0.5Tl0.5Ba2Ca2Cu3O10d and Cu0.5Tl0.5Ba2Ca2Cu1.5 M1.5O10d (M = Cd, Zn, and Ni). J. Supercond. Nov. Magn. 30(5), 1153 (2017)

    Article  CAS  Google Scholar 

  24. C.C. Lai, P.C. Ho, C.Y. Hung, H.C. Ku, Chin. J. Phys. 29(1), 57–64 (1991)

    CAS  Google Scholar 

  25. S.H. Safeer, A. Riaz, N.A. Khan, Study of carrier transfer mechanism when substituting strontium at barium sites in CuTl-1223 superconducting phase. J. Electron. Mater. 50, 4034–4040 (2021)

    Article  CAS  Google Scholar 

  26. K. Naseem, N.A. Khan, S.H. Safeer, Effect of magnesium doping to reduce the charge reservoir layer in Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x=0, 0.15, 0.25, 0.35) superconductors. J. Electron. Mater. 50, 2164–2170 (2021)

    Article  CAS  Google Scholar 

  27. J.L. Tallon, Oxygen in High-Tc cuprate superconductors, in Frontiers in superconducting materials. ed. by A.V. Narlikar (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  28. G. Bahmanrokh, M. Hashim, I. Ismail, N. Soltani, P. Vaziri, M.S.E. Shafie, M. Navaseri, J. Supercond. Nov. Magn. 26, 407 (2013)

    Article  CAS  Google Scholar 

  29. M. Knobe, W.C. Nunes, H. Winnischofer, T.C.R. Rocha, L.M. Socolovsky, C.L. Mayorga et al., J. Non. Cryst. Solids. 353, 743 (2007)

    Article  Google Scholar 

  30. B. Shabbir, A. Ullah, N. Hassan, M. Irfan, N.A. Khan, Suppression of superconductivity due to enhanced Co doping in Cu0.5Tl0.5Ba2Ca2Ca2Cu3−yCoyO10−δ superconductors. J. Supercond. Nov. Magn. 24, 1521–1526 (2011)

    Article  CAS  Google Scholar 

  31. E. Kandyel, M.A. Sekkina, M.A.T. Dawoud, M.Y. Bohnam, Effect of 3d metal ion doping on the structure and superconductivity of (Tl0.5Pb0.5)Sr2CaCu2O7. Solid. State. Commun. 135, 214–219 (2005)

    Article  CAS  Google Scholar 

  32. M.U. Muzafar, S.H. Safeer, N.A. Khan, A.A. Khurram, Modified synthesis route to achieve Sr substituted Cu0.5Tl0.5–1234 superconductor phase. Mater. Chem. Phys. 181, 384–390 (2016)

    Article  Google Scholar 

  33. M. Kaur, R. Srinibasan, G.K. Mehta, D. Kanjilal, R. Pinto, S.B. Ogale, S. Mohan, V. Ganesan, Effect of disorder on the exponent in the coherence region in high temperature superconductors. Phys. C. 443, 61–68 (2006)

    Article  CAS  Google Scholar 

  34. M.M.E. Barakat, A.I. Aboualy, R. Awad, N.S. Aly, S. Ibrahim, Excess conductivity analysis for superconducting phase. Int. J. Modern. Phys. B. 30, 1650115 (2016)

    Article  CAS  Google Scholar 

  35. N.A. Khan, S.H. Safeer, M. Rahim, M. Nasir Khan, N. Hassan, Excess conductivity analysis of Cu0.5Tl0.5Ba2Can-1CunO2n+4-δ(n = 2, 3, 4) thin films. J. Supercond. Nov. Magn. 30, 1493–1498 (2017)

    Article  CAS  Google Scholar 

  36. N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, N. Hassan, Excess conductivity analyses of (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin film samples synthesized at different temperatures and postannealed in flowing nitrogen atmosphere. J. Mater. Sci. Mater. Electron. 29, 2209–2215 (2018)

    Article  CAS  Google Scholar 

  37. W.E. Lawrence, S. Doniach, Theory of layer-structure superconductors (Proceedings of the twelfth international conference on low temperature physics, Keigaku, Tokyo, 1971), p.361. (edited by Eizo Kanda)

    Google Scholar 

  38. N. Hassan, B. Shabbir, N.A. Khan, Excess-conductivity analysis of Mg- and Be-doped polycrystalline Cu0.5Tl0.5Ba2Ca1.5M1.5Cu4O12−d(M=0, Be, Mg) superconductors. J. Appl. Phys. 105, 083926 (2009)

    Article  Google Scholar 

  39. K. Pansuria, D. Kuberkar, G. Baldha, R. Kulkarni, Effect of Sr by Sr-Ca substitution on the superconductivity. (Er0.76 Ca0.24) Ba2 (Cu2.76Co0.24). Oz. J. Supercond. 10(1), 59–62 (1997)

    Article  CAS  Google Scholar 

  40. A. Sedky, A. Salah, Excess conductivity, diamagnetic transition and FTIR spectra of Ca substituted by La in (Bi, Pb):2212 superconducting system. J. Low. Temp. Phys. 201, 294–310 (2020)

    Article  CAS  Google Scholar 

  41. S.H. Safeer, A. Raza, N.A. Khan et al., Suppression of superconductivity by anharmonic oscillations in Zn- or Ni-doped Cu0.5Tl0.5Ba2(CaMg)Cu1.5M1.5O10-δ (M=Zn, Ni) superconductors evident by magnetic measurements. J. Electron. Mater. 50, 6518–6524 (2021)

    Article  CAS  Google Scholar 

  42. H. Ibach, H. Luth, Solid state physics: an introduction to theory and experiment, 1st edn. (Springer-Verlag, Berlin, 1991), p.222

    Book  Google Scholar 

  43. V.V. Schmidt, The physics of superconductors (Springer, New York, 1997), p. 45

    Google Scholar 

  44. A.I. Abou Aly, I.H. Ibrahim, R. Awad et al., Stabilization of Tl-1223 phase by arsenic substitution. J. Supercond. Nov. Magn. 23, 1325–1332 (2010)

    Article  CAS  Google Scholar 

  45. L.G. Aslamasov, A.I. Larkin, The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A. 26(6), 238–239 (1968)

    Article  Google Scholar 

  46. M.M.K.M. Sekkina, Elsabawy, Sr-doping for promoted high-T c BPSCCO superconductors. Phys. C. Supercond. 377(3), 254 (2002)

    Article  CAS  Google Scholar 

  47. A.K. Ghosh, S.K. Bandyopadhyay, P. Sen, A.N. Basu, Yl xCaxBa2Cu307 superconductors. Condens. Matter. Phys. 264, 255 (1996)

    CAS  Google Scholar 

  48. W. Gao, Q. Liu, L. Yang, Y. Yu, F. Li, X. Wang, J. Zhu, C. Jin, S. Uchida, Caution effects in new superconductors Sr 2 xBaxCuO 3+. Phys. C. Supercond. 47(2), 19–20 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hamza Safeer.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors. This article has not been published elsewhere and is not under consideration elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safeer, S.H., Sajjad, M.H. & Khan, N.A. Effects of cobalt nanoparticles addition in Cu0.5Tl0.5-1223 superconductor composite. J Electroceram 50, 112–120 (2023). https://doi.org/10.1007/s10832-023-00313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00313-1

Keywords

Navigation