Skip to main content
Log in

Study of Carrier Transfer Mechanism When Substituting Strontium at Barium Sites in CuTl-1223 Superconducting Phase

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strontium-doped CuTl-1223 phase has been obtained by employing a nonstoichiometric composition of the form Tl1/2Cu1/2(Ba1−xSrx)Ca1Cu4Oy (x = 0, 0.1, 0.2, 0.3). The superconducting properties of the samples were investigated by x-ray diffraction analysis and four-probe resistivity, alternating-current (AC) susceptibility, and Fourier-transform infrared (FTIR) absorption measurements. The effect of doping strontium atoms on the intrinsic superconductor parameters of these samples was studied by excess conductivity analysis. All the samples showed orthorhombic crystal structure in space group Pmmm, and the cell parameters were determined by using all the planar reflections. The c-axis length and the unit cell volume decreased with Sr doping in the final compound. Suppression of the room-temperature resistivity followed by metallic variations in resistivity versus temperature measurements are typical features for these samples. The zero-resistivity critical temperature and the onset of diamagnetism were suppressed with increasing Sr doping in the final compound. The apical oxygen phonon mode of type Cu(1)–OA–Cu(2) observed at around 548 cm−1 hardened with increasing Sr doping. The excess conductivity analysis revealed that the coherence length along the c-axis, the interlayer coupling, and the Fermi velocity of the carriers increased for the Sr doping levels of x = 0.1 and 0.2 but decreased for the sample with x = 0.3. The values of Bc0(T), Bc1(T), and Jc0(0) increased with increasing Sr doping in the final compound. It is proposed that this effect arises due to an increase in the superconducting volume fraction. A decrease in the value of the London penetration depth λp.d. and the Ginzburg–Landau (GL) parameter shows that the flux-pinning characteristics of the samples were improved by Sr doping. An increase in the mean free time of the carriers and a decrease in the energy required to break apart Cooper pairs result from a decrease in the remanent field scattering induced by the increased population of pinning centers in Sr-doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Raza, N.A. Khan, and N. Hassan, J. Electron. Mater. 49, 2302 (2020).

    Article  CAS  Google Scholar 

  2. K. Naseem, N.A. Khan, and S.H. Safeer, J. Electron. Mater. 50, 2164 (2021).

    Article  CAS  Google Scholar 

  3. B. Shabbir, M.I. Malik, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1977 (2011).

    Article  CAS  Google Scholar 

  4. B. Shabbir, A. Ullah, N. Hassan, M. Irfan, and N.A. Khan, J. Supercond. Nov. Magn. 24, 1521 (2011).

    Article  CAS  Google Scholar 

  5. N.A. Khan, and A.A. Khurram, Appl. Phys. Lett. 86, 1 (2005).

    Article  CAS  Google Scholar 

  6. N.A. Khan, and G. Husnain, Physica C Supercond. Appl. 436, 51 (2006).

    Article  CAS  Google Scholar 

  7. B. Shabbir, X. Wang, S.R. Ghorbani, C. Shekhar, S. Dou, and O.N. Srivastava, Sci. Rep. 5, 8213 (2015).

    Article  CAS  Google Scholar 

  8. B. Shabbir, X. Wang, S.R. Ghorbani, A.F. Wang, S. Dou, and X.H. Chen, Sci. Rep. 5, 10606 (2015).

    Article  CAS  Google Scholar 

  9. B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, and X. Wang, Phys. Rev. Mater. 1, 044805 (2017).

    Article  Google Scholar 

  10. N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, and A.A. Rizvi, J. Appl. Phys. 107, 083910 (2010).

    Article  CAS  Google Scholar 

  11. K. Pansuria, D. Kuberkar, G. Baldha, and R. Kulkarni, J. Supercond. 10, 59 (1997).

    Article  CAS  Google Scholar 

  12. M.M. Elkholy, I.L.M. Sharaf El-Deen, T.M.M. El-Zaidia, I.A. A. El-Hamalawy and W.M. Hussain, Radiat. Phys. Chem. 47(5), 691 (1996).

  13. E. Oliber, C. Gonzalez-Oliver, F. Prado, A. Serquis, A. Caneiro, and D. Esparza, Physica C 235–240, 469 (1994).

    Article  Google Scholar 

  14. A. Sin, F. Alsina, N. Mestres, A. Sulpice, P. Odier, and M. NuHnez-Regueiro, J. Solid State Chem. 161, 355 (2001).

    Article  CAS  Google Scholar 

  15. M. Sumadiyasa, N. Wendri, P. Suardana, and N.N. Rupiasih, J. Mater. Sci. Chem. Eng. 8, 44 (2020).

    CAS  Google Scholar 

  16. C. Collignon, X. Lin, C.W. Rischau, and B.F.K. Behnia, Annu. Rev. Condens. Matter Phys. 6, 2 (2018).

    Google Scholar 

  17. Y. Tomioka, N. Shirakawa, K. Shibuya, and I.H. Inoue, Nat. Commun. 10, 738 (2019).

    Article  CAS  Google Scholar 

  18. N.A. Khan, and M.H. Zeb, J. Supercond. Nov. Magn. 28, 3267 (2015).

    Article  CAS  Google Scholar 

  19. R.S. Liu, C.Y. Chang, and J.M. Chen, Inorg. Chem. 37, 5527 (1998).

    Article  CAS  Google Scholar 

  20. P. Toulemonde, P. Odier, P. Bordet, S. Le Floch, and E. Suard, J. Phys. Condens. Matter 16, 4061 (2004).

    Article  CAS  Google Scholar 

  21. C.C. Lai, P.C. Ho, C.Y. Hung, and H.C. Ku, Chin. J. Phys. 29, 1 (1991).

    Google Scholar 

  22. A. Raza, S.H. Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).

    Article  CAS  Google Scholar 

  23. N. Yamada, and M. Ido, Physica C Supercond. 203, 240 (1992).

    Article  CAS  Google Scholar 

  24. N.A. Khan, M. Mumtaz, K. Sabeeh, M.I.A. Khan, and M. Ahmed, Phys. C Supercond. Appl. 407, 103 (2004).

    Article  CAS  Google Scholar 

  25. M. Kaur, R. Srinivasan, G. Mehta, D. Kanjilal, R. Pinto, S. Ogale, S. Mohan, and V. Ganesan, Physica C Supercond. 443, 61 (2006).

    Article  CAS  Google Scholar 

  26. M.M. Sekkina, and K.M. Elsabawy, Physica C Supercond. 377, 254 (2002).

    Article  CAS  Google Scholar 

  27. A.K. Ghosh, S.K. Bandyopadhyay, P. Sen, and A.N. Basu, Condens. Matter Phys. 264, 255 (1996).

    CAS  Google Scholar 

  28. M. Mumtaz, L. Ali, M. Waqee-ur Rehman, K. Nadeem, G. Hussain, G. Abbas, and B. Majeed, J. Supercond. Nov. Magn. 30, 2741 (2017).

    Article  CAS  Google Scholar 

  29. N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, and N. Hassan, J. Mater. Sci. Mater. Electron. 29, 2209 (2018).

    Article  CAS  Google Scholar 

  30. N. Hassan, B. Shabbir, and N.A. Khan, J. Appl. Phys. 105, 083926 (2009).

    Article  CAS  Google Scholar 

  31. M. Irfan, N. Hassan, S.A. Manzoor, B. Shabbir, and N.A. Khan, J. Appl. Phys. 106, 113913 (2009).

    Article  CAS  Google Scholar 

  32. M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, T. Subhani, and R. Nazir, J. Supercond. Nov. Magn. 31, 1669 (2018).

    Article  CAS  Google Scholar 

  33. H. Ibach, and H. Luth, Solid State Physics: An Introduction to Theory and Experiment, 1st edn. (Berlin: Springer, 1991), p. 222.

    Book  Google Scholar 

  34. F. Ben Azzouz, M. Zouaoui, M. Annabi, and M. Ben Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006).

    CAS  Google Scholar 

  35. N.A. Khan, S.H. Safeer, M. Rahim, M.N. Khan, and N. Hassan, J. Supercond. Nov. Magn. 30, 1493 (2017).

    Article  CAS  Google Scholar 

  36. W. Gao, Q. Liu, L. Yang, Y. Yu, F. Li, X. Wang, J. Zhu, C. Jin, and S. Uchida, Physica C Supercond. 47, S19 (2010).

    Article  CAS  Google Scholar 

  37. B. Shabbir, X. Wang, Y. Ma, S.X. Dou, S.S. Yan, and L.M. Mei, Sci. Rep. 6, 23044 (2016).

    Article  CAS  Google Scholar 

  38. F. Ben-Azzouz, M. Zouaoui, M. Annabi, and M. Ben-Salem, Phys. Status Solidi Curr. Top. Solid State Phys. 3, 3048 (2006).

    CAS  Google Scholar 

  39. M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landınez Tellez, and J. Roa Rojas, Phys. B Condens. Matter 398, 360 (2007).

    Article  CAS  Google Scholar 

  40. W. E. Lawrence and S. Doniach, Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by Eizo Kanda (Keigaku, Tokyo) p. 361, (1971).

  41. H.H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, EPL 82, 1 (2008).

    Article  CAS  Google Scholar 

  42. A.I.A. Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, and A. Khalaf, J. Supercond. Nov. Magn. 23, 1325 (2010).

    Article  CAS  Google Scholar 

  43. N.A. Khan, M.N. Ashraf, and S.H. Safeer, J. Supercond. Nov. Magn. 29, 2253 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hamza Safeer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safeer, S.H., Riaz, A. & Khan, N.A. Study of Carrier Transfer Mechanism When Substituting Strontium at Barium Sites in CuTl-1223 Superconducting Phase. J. Electron. Mater. 50, 4034–4040 (2021). https://doi.org/10.1007/s11664-021-08947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08947-z

Keywords

Navigation