Skip to main content
Log in

Excess conductivity analyses of (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin film samples synthesized at different temperatures and post-annealed in flowing nitrogen atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin films were synthesized at 895, 905 and 920 °C. These films are c-axis oriented and have shown tetragonal structure. The samples have been investigated for excess conductivity analysis. The analyses are carried out by following Aslamazov–Larkin theory. It is observed that the values of ξc(0), vF, λp.d, J decrease, but that of Bc(T), Bc1(T), Jc(0) increase with the increase of synthesis temperature. However, with the post-annealing of the samples at 100, 300 and 400 °C, the values of ξc(0), vF, τϕ and J increase but, the values of Bc(T), Bc1(T) and Jc(0) suppress with the increasing annealing temperature. It is proposed that with the higher synthesis temperature thallium defects are created in the charge reservoir layer that act as pinning centers whereas with post-annealing of the samples oxygen defects are removed. The former enhances whereas the later promotes suppression of Bc(T), Bc1(T), Jc(0) parameters in (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.P. Siegal, E.L. Venturini, B. Morosin, T.L. Aselage, J. Mater. Res. 12, 2825 (1997)

    Article  Google Scholar 

  2. S.C. Speller, Mater. Sci. Technol. 19(3), 269–282 (2003)

    Article  Google Scholar 

  3. P. Kuppusami, V.S. Raghunathan, Int. Mater. Rev. 48(1), 1–43 (2003). doi:10.1179/095066003225010191

  4. N.A. Khan, S.H. Safeer, M. Rahim, M.N. Khan, N. Hassan, J. Supercond. Nov. Magn. (2017).doi:10.1007/s10948-016-3942-z

  5. D. Seron, H. Kokabi, M. Rabii, S. Sautrot, G. Alqui, J. Supercond. 16, 857–865 (2003)

    Article  Google Scholar 

  6. N.N. Ishikawa, Y. Chimi, A. Iwase, K. Tsuru, O. Michikami, J. Nucl. Mater. 258, 1924 (1998)

    Article  Google Scholar 

  7. J.R. Tesmer, M. Nastasi, Nucl. Instrum. Methods B 45, 476 (1990)

    Article  Google Scholar 

  8. B. Hensel, J. Nucl. Mater. 251, 224 (1897)

  9. J. Provost, V. Hardy, Ch.. Simon, M. Hervieu, D. Groult, S. Hébert, Int. J. Inorg. Mater. 2, 635 (2000)

    Article  Google Scholar 

  10. L. Civale, Supercond. Sci. Technol. 10, A11 (1997)

    Article  Google Scholar 

  11. M.A. Kirk, M.C. Frischherz, J.Z. Liu, L.L. Funk, L.J. Thompson, E.A. Ryan, S.T. Ockers, H.W. Weber, Phys. C 162, 532 (1998)

    Google Scholar 

  12. J.C. Barbour, E.L. Venturini, D.S. Ginley, Nucl. Instrum. Methods B59, 1395 (1991)

    Article  Google Scholar 

  13. I. Kirschner, A. Balogh, M. Peurla, R. Laiho, C. Mészáros, A. Pintér-Csordás, Phys. C 450, 105 (2006)

    Article  Google Scholar 

  14. K. Nakashima, N. Chikumoto, A. Ibi, S. Miyata, Y. Yamada, T. Kubo, A. Suzuki, T. Terai, Phys. C 463, 665 (2007)

    Article  Google Scholar 

  15. K. Ogikubo, M. Nakano, T. Shitamichi, T. Terai, M. Yamawaki, S. Okayasu, K. Hojou, Phys. C 378, 368 (2002)

    Article  Google Scholar 

  16. X.X. Gao, W. Xie, Z. Wang, X.J. Zhao, J. Supercond. Nov. Magn. 27, 1665–1670 (2014)

    Article  Google Scholar 

  17. A. Nawazish, Y. Khan, H. Sekita, Ihara, Supercond. Sci. Technol. 15, 613 (2002)

    Article  Google Scholar 

  18. H. Ihara, A. Iyo, K. Tanaka, K. Tokiwa, K. Ishida, N. Terada, M. Tokumoto, Y. Sekita, T. Tsukamoto, T. Watanabe, M. Umeda, Phys. C 282, 973 (1997)

    Google Scholar 

  19. N.A. Khan, Y. Sekita, F. Tateai, T. Kojima, K. Ishida, N. Terada, H. Ihara, Phys. C 320, 39–44 (1999)

    Article  Google Scholar 

  20. N.A. Khan, Y. Sekita, H. Ihara, Supercond. Sci. Technol. 15, 613–618 (2002)

    Article  Google Scholar 

  21. T. Sato, H. Nakane, N. Mori, S. Yoshizawa, Phys. C 344–360, 244–247. (2003)

    Google Scholar 

  22. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys. C 264, 255–260 (1996)

    Article  Google Scholar 

  23. W.E. Lawrence, S. Doniach, in Proceedings of the Twelfth International Conference on Low Temperature Physics, ed by E. Kanda (Keigaku, Tokyo, 1971), p. 361

  24. A.I. Abu Aly, I.H. Ibrahim, R.A. Awad, A. El-Harizy, J. Supercond. Nov. Magn. 23, 1325 (2010)

    Article  Google Scholar 

  25. M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landinez Tellez, J. Roa-Rojas, Phys. B 398, 360 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Safeer, S.H., Khan, M.N. et al. Excess conductivity analyses of (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δ thin film samples synthesized at different temperatures and post-annealed in flowing nitrogen atmosphere. J Mater Sci: Mater Electron 29, 2209–2215 (2018). https://doi.org/10.1007/s10854-017-8134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8134-5

Navigation