Skip to main content
Log in

Preparation and electrical properties of sintered bodies composed of Mn(2.25-X)FeXNi0.75O4 (0≦X≦2.25) with cubic spinel structure

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Preparation and electrical properties of sintered bodies consisting of monophase cubic spinel oxides, Mn(2.25-X)FeXNi0.75O4 (0≦X≦2.25), were investigated. Sintered bodies with monophase cubic spinel structure were prepared by heat-treatment for 48 h in air at 1000 °C and/or 1200 °C to convert them into a cubic spinel structure after sintering at 1400 °C in Ar. The relationship between ln (σ) and T −1 was expressed as straight lines for all compositions, indicating that these oxides have intrinsic NTC thermistor characteristics. Here, σ is electrical conduction. The relationship of the specimens in the region of 0≦X≦2.125 was seen to consist of two straight lines with slightly different slopes. Turning points were observed near 300 °C. It was thought that the carrier concentration changed based on the disproportionation reaction of Mn3+ in the octahedral site (B site) of the spinel structure. For specimens with X below 1.5, the electrical conduction was considered to be mainly due to an electron jump between Mn3+ and Mn4+ in the B site. For specimens with X above 1.875, the conduction was considered to be mainly due to an electron jump between Fe2+ and Fe3+ in the B site. It was found that the activation energy of the mobility between Fe ions is lower than that between Mn ions. The electrical conduction of the sintered bodies was concluded to be controlled by a small polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Yokoyama, K. Kondo, K. Komeya, T. Meguro, Y. Abe, T. Sasamoto, J. Mater. Sci. 30, 1845 (1995)

    Article  Google Scholar 

  2. T. Yokoyama, Y. Abe, T. Meguro, K. Komeya, K. Kondo, S. Kaneko, T. Sasamoto, Jpn. J. Appl. Phys. 35, 5775 (1996)

    Article  Google Scholar 

  3. T. Yokoyama, T. Meguro, K. Kato, S. Okazaki, D. Ito, J. Tatami, T. Wakihara, K. Komeya, J. Electroceram. 31, 353 (2013)

    Article  Google Scholar 

  4. T. Yokoyama, K. Kato, T. Meguro, J. Tatami, T. Wakihara, K. Komeya, S. Okazaki, D. Ito, J. Ceram. Processing Research 16, 531 (2015)

    Google Scholar 

  5. T. Yokoyama, R. Ichida, S. Morimoto, S. Okazaki, D. Ito, Y. Koshiba, T. Meguro, Mater. Sci. Tech. Jpn. 49, 276 (2012)

    Google Scholar 

  6. E. J. W. Verwey, E. L. Heilmann, J. Chem. Phys. 15, 174 (1947)

    Article  Google Scholar 

  7. A. P. B. Sinha, N. R. Sanjana, A. B. Biswas, Acta Cryst 10, 439 (1957)

    Article  Google Scholar 

  8. F. S. Galasso, International series of monographs in solid state physics, volume 7, structure and properties of inorganic solids (Pergamon Press Inc., Oxford, 1970), p. 211

    Book  Google Scholar 

  9. P. A. Cox, The electronic structure and chemistry of solids (Oxford University Press, Oxford, 1987), p. 166

    Google Scholar 

  10. T. Yokoyama, Y. Kumashiro, Y. Abe, T. Meguro, K. Komeya, J. Aust. Ceramic Soc. 34, 30 (1998)

    Google Scholar 

  11. S. E. Dorris, T. O. Mason, J. Am. Ceram. Soc. 71, 379 (1988)

    Article  Google Scholar 

  12. N. Cusack, P. Kendall, Proc. Phys. Soc. 72, 898 (1958)

    Article  Google Scholar 

  13. R. D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  14. G. H. Jonker, S. Van Houten, In Halbleiterprobleme, ed. By F. S. Köhn (Frieder Vieweg & Sohn, Braunschweing, 1961), p. 118

    Book  Google Scholar 

  15. S. Okamoto, K. Kohn, Magunetoseramikkusu, ed. By T. Yamaguchi and H. Yanagida (Gihodosyuppan, Tokyo, 1985), p. 9

    Google Scholar 

  16. P. A. Cox, The electronic structure and chemistry of solids (Oxford University Press, Oxford, 1987), p. 134

    Google Scholar 

  17. T. Kaino, R. Kanno, Zairyokagaku-kisotooyo- (Totyokagakudojin, Tokyo, 2008), p. 115

    Google Scholar 

  18. Y. Ikuhara, C. Ohtsuki, M. Kusunoki, K. Koumoto, M. Gomi, K. Tanaka, T. Tsurumi, A. Nakahira, A. Matsuda, M. Miyayama, Mukikinozairyo, ed. By K. Koumoto (Totyokagakudojin, Tokyo, 2009) p. 127

  19. S. P. Mitoff, Progr. Ceram. Sci. 4, 217 (1966)

    Google Scholar 

  20. G. W. Rathenad, J. B. Goodenough, J. Appl. Phys. 39, 403 (1968)

    Article  Google Scholar 

  21. J. B. Goodenough, Progr. Solid State Chem. 5, 145 (1971)

    Article  Google Scholar 

  22. φ. Johannesen, P. Kofstad, J. Mater. Educ. 7, 915 (1985)

    Google Scholar 

  23. P. A. Cox, The electronic structure and chemistry of solids (Oxford University Press, Oxford, 1987), p. 195

    Google Scholar 

  24. A. J. Moulson, J. M. Herbert, Electroceramics (John Wiley & Sons Ltd., England, 2003), p. 5

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, T., Yamazaki, A., Meguro, T. et al. Preparation and electrical properties of sintered bodies composed of Mn(2.25-X)FeXNi0.75O4 (0≦X≦2.25) with cubic spinel structure. J Electroceram 37, 151–157 (2016). https://doi.org/10.1007/s10832-016-0050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0050-1

Keywords

Navigation