Skip to main content
Log in

Predictive control of intersegmental tarsal movements in an insect

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signalling in local networks controlling limb movement. European Journal of Neuroscience, 36(9), 3269–3282.

    Article  PubMed  Google Scholar 

  • Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1), 54–65.

    Article  CAS  PubMed  Google Scholar 

  • Au, S. K., & Herr, H. M. (2008). Powered ankle-foot prosthesis. IEEE Robotics and Automation Magazine, 15(3), 52–59.

    Article  Google Scholar 

  • Bares, J. E. (1999). Dante II: technical description, results, and lessons learned. The International Journal of Robotics Research, 18(7), 621–649.

    Article  Google Scholar 

  • Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: what can we learn from insects? Communications of the ACM, 40(3), 30–38.

    Article  Google Scholar 

  • Bishop, C. M., Lange, N., & Ripley, B. D. (1995). Neural networks for pattern recognition (Vol. 92). London: Oxford University Press.

    Google Scholar 

  • Burrows, M. (1996). The neurobiology of an insect brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Burrows, M., & Horridge, G. A. (1974). The organization of inputs to motoneurons of the locust metathoracic leg. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 269(896), 49–94.

    Article  CAS  PubMed  Google Scholar 

  • Büschges, A., & Gruhn, M. (2007). Mechanosensory feedback in walking: from joint control to locomotor patterns. In Insect mechanics and control (Vol. 34, pp. 193–230). Academic Press.

  • Büschges, A., Kittmann, R., & Schmitz, J. (1994). Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 174(6), 685–700.

    Article  Google Scholar 

  • Chen, D., Yin, J., Zhao, K., Zheng, W., & Wang, T. (2011). Bionic mechanism and kinematics analysis of hopping robot inspired by locust jumping. Journal of Bionic Engineering, 8(4), 429–439.

    Article  Google Scholar 

  • Clarac, F., Vedel, J. P., & Bush, B. M. (1978). Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs. The Journal of Experimental Biology, 73, 29–46.

    CAS  PubMed  Google Scholar 

  • Costalago Meruelo, A., Simpson, D. M., Veres, S. M., & Newland, P. L. (2016). Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, 75, 56–65.

    Article  PubMed  Google Scholar 

  • Cruse, H., Dautenhahn, K., & Schreiner, H. (1992). Coactivation of leg reflexes in the stick insect. Biological Cybernetics, 67(4), 369–375.

    Article  Google Scholar 

  • Cruse, H., Kindermann, T., Schumm, M., Dean, J., & Schmitz, J. (1998). Walknet—a biologically inspired network to control six-legged walking. Neural Networks, 11(7–8), 1435–1447.

    Article  PubMed  Google Scholar 

  • Delcomyn, F. (2004). Insect walking and robotics. Annual Review of Entomology, 49, 51–70.

    Article  CAS  PubMed  Google Scholar 

  • Delcomyn, F., & Nelson, M. E. (2000). Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, 30(1), 5–15.

    Article  Google Scholar 

  • Dewhirst, O. P. (2012). Nonlinear system analysis of local reflex control of locust hind limbs by, PhD thesis, University of Southampton.

  • Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58.

    Article  PubMed  Google Scholar 

  • Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33(3), 237–250.

    Article  PubMed  Google Scholar 

  • Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer Science & Business Media.

  • Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2), 427–438.

    Article  PubMed  Google Scholar 

  • Espenschied, K. S., Chiel, H. J., Quinn, R. D., & Beer, R. D. (1993). Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion. Adaptive Behavior, 1(4), 455–468.

    Article  Google Scholar 

  • Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18(1–2), 59–64.

    Article  Google Scholar 

  • Faisal, A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field, L. H., & Burrows, M. (1982). Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology, 101(1), 265–285.

    Google Scholar 

  • Field, L. H., & Rind, F. C. (1981). A single insect chordotonal organ mediates inter-and intra-segmental leg reflexes. Comparative Biochemistry and Physiology Part A, 68(1), 99–102.

    Article  Google Scholar 

  • Gandevia, S. C., Refshauge, K. M., & Collins, D. F. (2002). Proprioception: peripheral inputs and perceptual interactions BT - sensorimotor control of movement and posture. Boston: Springer.

    Google Scholar 

  • Goble, D. J., Coxon, J. P., Wenderoth, N., Van Impe, A., & Swinnen, S. P. (2009). Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 33(3), 271–278.

  • Halbertsma, J. M. (1983). The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica. Supplementum, 521, 1–75.

    CAS  PubMed  Google Scholar 

  • Hanson, M. A., Burton, A. K., Kendall, N. A. S., Lancaster, R. J., & Pilkington, A. (2006). The costs and benefits of active case management and rehabilitation for musculoskeletal disorders, Prepared by Hu-Tech Associates Ltd for the Health and Safety Executive, London, 2006.

  • Haykin, S. (2004). Neural networks: a comprehensive foundation (Vol. 2). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • He, J., Maltenfort, M., Wang, Q. W. Q., & Hamm, T. (2001). Learning from biological systems: modeling neural control. IEEE Control Systems Magazine, 21(4), 55–69.

    Article  Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4), 642–653.

    Article  PubMed  Google Scholar 

  • Jiménez-Fabián, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering and Physics, 34(4), 397–408.

    Article  PubMed  Google Scholar 

  • John, H. (1992). Holland, Adaptation in natural and artificial systems. Cambridge: MIT Press.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95—international conference on neural networks. (Vol. 4, pp. 1942–1948). IEEE.

  • Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.

    CAS  PubMed  Google Scholar 

  • Kovač, M., Fuchs, M., Guignard, A., Zufferey, J. C., & Floreano, D. (2008). A miniature 7g jumping robot. In Proceedings—IEEE international conference on robotics and automation (pp. 373–378).

  • Lewinger, W. A., Reekie, H. M., & Webb, B. (2011). A hexapod robot modeled on the stick insect. In IEEE 15th international conference on advanced robotics: new boundaries for robotics (pp. 541–548). ICAR 2011’.

  • Ljung, L. (1998). System identification. In Signal analysis and prediction (pp. 163–173). Springer.

  • Marder, E., & Taylor, A. L. (2011). Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience, 14(2), 133–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (Vol. 10). New York: Wiley.

    Book  Google Scholar 

  • Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746.

  • Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310.

  • Pearson, K. G. (1993). Common principles of motor control in vertebrates and invertebrates. Annual Review of Neuroscience, 16, 265–297.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, K. G. (1995). Proprioceptive regulation of locomotion. Current Opinion in Neurobiology, 5(6), 786–791.

    Article  CAS  PubMed  Google Scholar 

  • Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17(6), 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure and Development, 33(3), 361–379.

    Article  PubMed  Google Scholar 

  • Rushton, D. N. (1997). Functional electrical stimulation. Physiological Measurements, 18(4), 241–75.

    Article  CAS  Google Scholar 

  • Schneidman, E., Brenner, N., Tishby, N., van Steveninck, R. R. D. R., & Bialek, W. (2000). Universality and individuality in a neural code. ArXiv Physics e-prints p. 16.

  • Shultz, A. H., Lawson, B. E., & Goldfarb, M. (2016). Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24 (4), 495–505.

    Article  PubMed  Google Scholar 

  • Sietsma, J., & Dow, R. J. F. (1991). Creating artificial neural networks that generalize. Neural Networks, 4 (1), 67–79.

    Article  Google Scholar 

  • Stewart, J. D. (2008). Foot drop: where, why and what to do? Practical Neurology, 8(3), 158–169.

    Article  PubMed  Google Scholar 

  • Suraweera, N. P., & Ranasinghe, D. N. (2008). A natural algorithmic approach to the structural optimisation of neural networks. In Proceedings of the 2008 4th international conference on information and automation for sustainability (pp. 150–156). ICIAFS 2008.

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3), 328–339.

    Article  Google Scholar 

  • Webb, B. (2002). Robots in invertebrate neuroscience. Nature, 417(6886), 359–363.

    Article  CAS  PubMed  Google Scholar 

  • Webb, B, Harrison, R. R., & Willis, M. A. (2004). Sensorimotor control of navigation in arthropod and arti cial systems.

  • Yao, X. (1999). Evolving artificial neural networks. In Proceedings of the IEEE (Vol. 87, pp. 1423–1447).

Download references

Acknowledgements

Alicia Costalago-Meruelo was supported by an EPRSC grant (EP/G03690X/1) from The Institute of Sound and Vibration Research and the Institute for Complex Systems Simulations at the University of Southampton. The data is freely available through the Southampton University repository under. doi:10.5258/SOTON/D0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Costalago-Meruelo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Catherine E. Carr

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(WMV 4.38 MB)

(PDF 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costalago-Meruelo, A., Simpson, D.M., Veres, S.M. et al. Predictive control of intersegmental tarsal movements in an insect. J Comput Neurosci 43, 5–15 (2017). https://doi.org/10.1007/s10827-017-0644-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0644-x

Keywords

Navigation