Skip to main content
Log in

Identified nonspiking interneurons in leg reflexes and during walking in the stick insect

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.

In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).

In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).

During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).

The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLP:

reflex, compensatory leg placement reflex

CI1:

common inhibitor I motoneuron

fCO:

femoral chordotonal organ

FETi:

fast extensor tibiae motoneuron

FT:

femur-tibia

SETi:

slow extensor tibiae motoneuron

References

  • Ballantyne D, Rathmayer W (1981) On the function of the common inhibitory neurone in the walking legs of the crab, Eriphia spinifrons. J Comp Physiol 143:111–122

    Google Scholar 

  • Bässler U (1965) Propriorezeptoren am Subcoxalund Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2:168–193

    Google Scholar 

  • Bässler U (1976) Reflex reversal of a single motoneuron in the stick insect Carausius morosus. Biol Cybern 24:47–49

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bässler U (1988a) Pattern generation for walking movements. Trends Biol Cybern 1:295–308

    Google Scholar 

  • Bässler U (1988b) Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J Exp Biol 136:125–147

    Google Scholar 

  • Bässler U (1993a) The femur-tibia control system of stick insects — a model system for the study of the neural basis of joint control. Brain Res Rev 18:207–226

    Google Scholar 

  • Bässler U (1993b) The walking (and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators. Biol Cybern 69:305–317

    Google Scholar 

  • Bässler U, Büschges A (1990) Interneurons participating in the “active reaction” in stick insects. Biol Cybern 62:529–538

    Google Scholar 

  • Bässler U, Storrer J (1980) The neural basis of the femur-tibia-control-system in the stick insect Carausius morosus. Biol Cybern 38:107–114

    Google Scholar 

  • Burns MD (1973) The control of walking in Orthoptera. J Exp Biol 58:45–58

    Google Scholar 

  • Burrows M (1987) Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. J Neurosci 7:1064–1080

    Google Scholar 

  • Burrows M (1992) Local circuits for the control of leg movements in an insect. Trends Neurosci 15:226–232

    Google Scholar 

  • Burrows M, Laurent GJ (1989) Reflex circuits and the control of movement. In: Durbin R, Miall C, Mitchison G (eds) The computing neuron. Adison-Wesley, New York, pp 244–261

    Google Scholar 

  • Burrows M, Laurent GJ, Field LH (1988) Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J Neurosci 8:3085–3093

    Google Scholar 

  • Bush BMH (1962) Proprioceptive reflexes in the legs of Carcinus maenas (L). J Exp Biol 39:89–105

    Google Scholar 

  • Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. J Exp Biol 144:81–111

    Google Scholar 

  • Büschges A (1990) Nonspiking pathways in a joint-control loop of the stick insect Carausius morosus. J Exp Biol 151:133–160

    Google Scholar 

  • Büschges A, Schmitz J (1991) Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. J Neurobiol 22:224–237

    Google Scholar 

  • Cruse H (1981) Is the position of the femur-tibia joint under feedback control in the walking stick insect? J Exp Biol 92:87–95

    Google Scholar 

  • Cruse H, Schmitz J (1983) The control system of Ihe femur-tibia joint in the standing leg of a walking slick insect Carausius morosus. J Exp Biol 102:175–185

    Google Scholar 

  • DiCaprio RA, Clarac F (1981) Reversal of a walking leg reflex elicited by a muscle receptor. J Exp Biol 90:197–203

    Google Scholar 

  • Driesang RB, Büschges A (1993) The neural basis of catalepsy in the stick insect. IV. The role of nonspiking interneurons. J Comp Physiol A 173:445–454

    Google Scholar 

  • El Manira A, Cattaert D, Clarac F (1991) Monosynaptic connections mediate resistance reflex in crayfish (Procambarus clarkii) walking legs. J Comp Physiol A 168:337–349

    Google Scholar 

  • Fricke M, Schmitz J (1988) Differences in an intersegmental reflex between the intact and the surgically lesioned stick insect. In: Elsner N, Barth F (eds) Sense organs. Proceed 16th Göttingen Neurobiol Conf. Abstr 92. Thieme, Stuttgart Berlin

    Google Scholar 

  • Godden DH, Graham D (1984) A preparation of the stick insect Carausius morosus for recording intracellularly from identified neurons during walking. Physiol Entomol 9:275–286

    Google Scholar 

  • Graham DH (1981) Walking kinetics of the stick insect using a low inertia, counter-balanced pair of independenl treadwheels. Biol Cybern 40:49–57

    Google Scholar 

  • Graham DH (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Graham DH, Wendler G (1981) The reflex behavior and innervation of the tergo-coxal retractor muscles of the stick insect Carausius morosus. J Comp Physiol 143:81–91

    Google Scholar 

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149

    Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Google Scholar 

  • Kittmann R (1991) Gain control in the femur-tibia feedback system of the stick insect. J Exp Biol 157:503–522

    Google Scholar 

  • Laurent GJ (1986) Thoracic intersegmental interneurons in the locust with mechanoreceptive inputs from a leg. J Comp Physiol A 159:171–186

    Google Scholar 

  • Laurent GJ (1987) The role of spiking local interneurons in shaping the receptive field of intersegmental interneurons in the locust. J Neurosci 7:2977–2989

    Google Scholar 

  • Laurent G, Burrows M (1988a) A population of ascending intersegmental interneurons in the locust with mechanosensory inputs from a hind leg. J Comp Neurol 275:1–12

    Google Scholar 

  • Laurent GJ, Burrows M (1988b) Direct excitation of nonspiking local interneurons by exteroceptors underlies tactile reflexes in the locust. J Comp Physiol A 162:563–572

    Google Scholar 

  • Laurent GJ, Burrows M (1989) Distribution of intersegmental inputs to nonspiking local interneurones and motor neurones in the locust. J Neurosci 9:3019–3029

    Google Scholar 

  • Marquardt F (1940) Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus. Zool Jb Abt Anat Ont Tiere 66:63–128

    Google Scholar 

  • Pearson KG, Fourtner CR, Wong RKS (1976) Connections between hair-plate afferents and motoneurones in the cockroach leg. J Exp Biol 64:251–266

    Google Scholar 

  • Rathmayer W, Bevengut M (1986) The common inhibitory neuron innervates every leg muscle in crabs. J Comp Physiol A 158:665–668

    Google Scholar 

  • Schmidt J, Rathmayer W (1993) Central organization of common inhibitory motoneurons in the locust: Role of afferent signals from leg mechanoreceptors. J Comp Physiol A 172:447–456

    Google Scholar 

  • Schmitz J (1985) Control of leg joints in stick insect: Differences in the reflex properties between the standing and the walking states. In: Gewecke M, Wendler G (eds) Insect Locomotion. Paul Parey, Berlin, pp 27–32

    Google Scholar 

  • Schmitz J (1986) The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus. Biol Cybern 55:25–34

    Google Scholar 

  • Schmitz J, Büschges A, Delcomyn F (1988) An improved electrode design for en passant recording from small nerves. Comp Biochem Physiol 91A:769–772

    Google Scholar 

  • Schmitz J, Büschges A, Kittmann R (1991a) Intracellular recordings from nonspiking interneurons in a semiintact, telhered walking insect. J Neurobiol 22:907–921

    Google Scholar 

  • Schmitz J, Dean J, Kittmann R (1991b) Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida). Zoomorphologie 111:19–33

    Google Scholar 

  • Skorupski P, Sillar KT (1986) Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. J Neurophysiol 55:689

    Google Scholar 

  • Storrer J, Bässler U, Mayer S (1986) Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus. Zool Jb Physiol 90:359–374

    Google Scholar 

  • Von Heiversen O, Eisner N (1977). The stridulalory movements of acridid grasshoppers recorded with an opto-electronic device. J Comp Physiol 122:53–64

    Google Scholar 

  • Weidler DJ, Diecke FPF (1969) The role of calion conductions in the central nervous system of the herbivorous insect Carausius morosus. Z Vergl Physiol 64:372–399

    Google Scholar 

  • Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250

    Google Scholar 

  • Wiens T, Rathmayer W (1985) The distribution of Ihe common inhibitory neuron in brachyuran limb musculature. J Comp Physiol A 156:305–313

    Google Scholar 

  • Wolf H (1990) Activity patterns of inhibitory motoneurons and their impact on leg movement in tethered walking locusts. J Exp Biol 152:281–304

    Google Scholar 

  • Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64:233–249

    Google Scholar 

  • Zill SN (1985) Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. J Exp Biol 116:435–461

    Google Scholar 

  • Zill SN (1987) Selective stimulation of an identified proprioceplor in freely moving locusls: role of resistance reflexes in active posture. Brain Res 417:195–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büschges, A., Kittmann, R. & Schmitz, J. Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J Comp Physiol A 174, 685–700 (1994). https://doi.org/10.1007/BF00192718

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192718

Key words

Navigation