Skip to main content
Log in

Convergent neuromodulation onto a network neuron can have divergent effects at the network level

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akay, T., Wood, D., & Nusbaum, M. P. (2004). Reciprocal inhibition is not necessary for generation of all gastric mill rhythms. In SfN 34th Annual Meeting. San Diego, CA.

  • Ambrosio-Mouser, C., Nadim, F., & Bose, A. (2006). The effects of varying the timing of inputs on a neuronal oscillator. SIAM Journal on Applied Dynamical Systems, 5, 108–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacci, A., Huguenard, J. R., & Prince, D. A. (2005). Modulation of neocortical interneurons: extrinsic influences and exercises in self-control. Trends in Neurosciences, 28, 602–610.

    Article  CAS  PubMed  Google Scholar 

  • Bartos, M., & Nusbaum, M. P. (1997). Intercircuit control of motor pattern modulation by presynaptic inhibition. Journal of Neuroscience, 17, 2247–2256.

    CAS  PubMed  Google Scholar 

  • Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19, 6650–6660.

    CAS  PubMed  Google Scholar 

  • Beenhakker, M. P., DeLong, N. D., Saideman, S. R., Nadim, F., & Nusbaum, M. P. (2005). Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. Journal of Neuroscience, 25, 8794–8806.

    Article  CAS  PubMed  Google Scholar 

  • Blitz, D. M., & Nusbaum, M. P. (2008). State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs. Journal of Neuroscience, 28, 9564–9574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitz, D. M., Christie, A. E., Coleman, M. J., Norris, B. J., Marder, E. & Nusbaum, M. P. (1999). Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. Journal of Neuroscience, 19, 5449–5463.

  • Briggman, K. L., & Kristan, W. B. (2008). Multifunctional pattern-generating circuits. Annual Review of Neuroscience, 31, 271–294.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, R. L. (1999). Taking the lead from a model. Current Biology, 9, R680–R683.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, R. L., Norris, B. J., Wenning, A., & Wright, T. M. (2011). Coping with variability in small neuronal networks. Integrative and Comparative Biology, 51, 845–855.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie, A. E., Stemmler, E. A., & Dickinson, P. S. (2010). Crustacean neuropeptides. Cellular and Molecular Life Sciences, 67, 4135–4169.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, M. J., Meyrand, P., & Nusbaum, M. P. (1995). A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature, 378, 502–505.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, N. D., Beenhakker, M. P., & Nusbaum, M. P. (2009a). Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system. Journal of Neurophysiology, 102, 3492–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong, N. D., Kirby, M. S., Blitz, D. M., & Nusbaum, M. P. (2009b). Parallel regulation of a modulator-activated current via distinct dynamics underlies comodulation of motor circuit output. Journal of Neuroscience, 29, 12355–12367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derjean, D., Moussaddy, A., Atallah, E., St-Pierre, M., Auclair, F., Chang, S., Ren, X., Zielinski, B., & Dubuc, R. (2010). A novel neural substrate for the transformation of olfactory inputs into motor output. PLoS Biology, 8, e1000567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Prisco, G. V., Pearlstein, E., Le Ray, D., Robitaille, R., & Dubuc, R. (2000). A cellular mechanism for the transformation of a sensory input into a motor command. Journal of Neuroscience, 20, 8169–8176.

    PubMed  Google Scholar 

  • Dickinson, P. S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Current Opinion in Neurobiology, 16, 604–614.

    Article  CAS  PubMed  Google Scholar 

  • Diehl, F., White, R. S., Stein, W., & Nusbaum, M. P. (2013). Motor circuit-specific burst patterns drive different muscle and behavior patterns. Journal of Neuroscience, 33, 12013–12029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi, A., & Ramirez, J. M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology & Neurobiology, 164, 96–104.

    Article  CAS  Google Scholar 

  • Dzirasa, K., Ribeiro, S., Costa, R., Santos, L. M., Lin, S. C., Grosmark, A., Sotnikova, T. D., Gainetdinov, R. R., Caron, M. G., & Nicolelis, M. A. (2006). Dopaminergic control of sleep-wake states. Journal of Neuroscience, 26, 10577–10589.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to Xppaut for researchers and students (software, environments, tools). Philadelphia: SIAM.

    Book  Google Scholar 

  • Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron, 52, 751–766.

    Article  CAS  PubMed  Google Scholar 

  • Harris-Warrick, R. M. (2011). Neuromodulation and flexibility in Central Pattern Generator networks. Current Opinion in Neurobiology, 21, 685–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins, V. E., Hawryluk, J. M., Takakura, A. C., Tzingounis, A. V., Moreira, T. S., & Mulkey, D. K. (2015). HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity. Journal of Neurophysiology, 113, 1195–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintos, N., & Nadim, F. (2014). A modeling exploration of how synaptic feedback to descending projection neurons shapes the activity of an oscillatory network. SIAM J Applied Dynamical Systems, 13, 1239–1269.

    Article  Google Scholar 

  • Kintos, N., Nusbaum, M. P., & Nadim, F. (2008). A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network. Journal of Computational Neuroscience, 24, 374–397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby, M. S., & Nusbaum, M. P. (2007). Peptide hormone modulation of a neuronally modulated motor circuit. Journal of Neurophysiology, 98, 3206–3220.

    Article  CAS  PubMed  Google Scholar 

  • LeBeau, F. E., El Manira, A., & Griller, S. (2005). Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends in Neurosciences, 28, 552–561.

    Article  CAS  PubMed  Google Scholar 

  • Lieske, S. P., & Ramirez, J. M. (2006). Pattern-specific synaptic mechanisms in a multifunctional network. II. Intrinsic modulation by metabotropic glutamate receptors. Journal of Neurophysiology, 95, 1334–1344.

    Article  CAS  PubMed  Google Scholar 

  • Lieske, S. P., Thoby-Brisson, M., Telgkamp, P., & Ramirez, J. M. (2000). Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps [see comment]. Nature Neuroscience, 3, 600–607.

    Article  CAS  PubMed  Google Scholar 

  • Manor, Y., Nadim, F., Abbott, L. F., & Marder, E. (1997). Temporal dynamics of graded synaptic transmission in the lobster stomatogastric ganglion. Journal of Neuroscience, 17, 5610–5621.

    CAS  PubMed  Google Scholar 

  • Manor, Y., Nadim, F., Epstein, S., Ritt, J., Marder, E., & Kopell, N. (1999). Network oscillations generated by balancing graded asymmetric reciprocal inhibition in passive neurons. Journal of Neuroscience, 19, 2765–2779.

    CAS  PubMed  Google Scholar 

  • Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron, 76, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.

    Article  CAS  PubMed  Google Scholar 

  • Marder, E., & Thirumalai, V. (2002). Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15, 479–493.

    Article  PubMed  Google Scholar 

  • McCormick, D. A., & Pape, H. C. (1990). Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. Journal of Physiology, 431, 319–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishchenko, E. F., & Rozov, N. K. (1980). Differential equations with small parameters and relaxation oscillators. New York: Plenum Press.

    Book  Google Scholar 

  • Morgan, P. T., Perrins, R., Lloyd, P. E., & Weiss, K. R. (2000). Intrinsic and extrinsic modulation of a single central pattern generating circuit. Journal of Neurophysiology, 84, 1186–1193.

    CAS  PubMed  Google Scholar 

  • Nadim, F., & Bucher, D. (2014). Neuromodulation of neurons and synapses. Current Opinion in Neurobiology, 29C, 48–56.

    Article  Google Scholar 

  • Nadim, F., Manor, Y., Nusbaum, M. P., & Marder, E. (1998). Frequency regulation of a slow rhythm by a fast periodic input. Journal of Neuroscience, 18, 5053–5067.

    CAS  PubMed  Google Scholar 

  • Nassel, D. R. (2009). Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? Invertebrate Neuroscience, 9, 57–75.

    Article  PubMed  Google Scholar 

  • Nusbaum, M. P. (2002). Regulating peptidergic modulation of rhythmically active neural circuits. Brain, Behavior and Evolution, 60, 378–387.

    Article  PubMed  Google Scholar 

  • Nusbaum, M. P., & Beenhakker, M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Nusbaum, M. P., & Blitz, D. M. (2012). Neuropeptide modulation of microcircuits. Current Opinion in Neurobiology, 22, 592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D., & Marder, E. (2001). The roles of co-transmission in neural network modulation. Trends in Neurosciences, 24, 146–154.

    Article  CAS  PubMed  Google Scholar 

  • Peck, J. H., Gaier, E., Stevens, E., Repicky, S., & Harris-Warrick, R. M. (2006). Amine modulation of Ih in a small neural network. Journal of Neurophysiology, 96, 2931–2940.

    Article  PubMed  Google Scholar 

  • Raper, J. A. (1979). Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science, 205, 304–306.

    Article  CAS  PubMed  Google Scholar 

  • Rauscent, A., Einum, J., Le Ray, D., Simmers, J., & Combes, D. (2009). Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis. Journal of Neuroscience, 29, 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, J. C., Blitz, D. M., & Nusbaum, M. P. (2013). Convergent rhythm generation from divergent cellular mechanisms. Journal of Neuroscience, 33, 18047–18064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saideman, S. R., Blitz, D. M., & Nusbaum, M. P. (2007). Convergent motor patterns from divergent circuits. Journal of Neuroscience, 27, 6664–6674.

    Article  CAS  PubMed  Google Scholar 

  • Skiebe, P. (2001). Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. Journal of Experimental Biology, 204, 2035–2048.

    CAS  PubMed  Google Scholar 

  • Stein, W., DeLong, N. D., Wood, D. E., & Nusbaum, M. P. (2007). Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron. European Journal of Neuroscience, 26, 1148–1165.

    Article  PubMed  Google Scholar 

  • Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20, 6752–6759.

    CAS  PubMed  Google Scholar 

  • Swensen, A. M., & Marder, E. (2001). Modulators with convergent cellular actions elicit distinct circuit outputs. Journal of Neuroscience, 21, 4050–4058.

    CAS  PubMed  Google Scholar 

  • White, R. S., & Nusbaum, M. P. (2011). The same core rhythm generator underlies different rhythmic motor patterns. Journal of Neuroscience, 31, 11484–11494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, D. E., Stein, W., & Nusbaum, M. P. (2000). Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. Journal of Neuroscience, 20, 8943–8953.

    CAS  PubMed  Google Scholar 

  • Yarger, A. M., & Stein, W. (2015). Sources and range of long-term variability of rhthmic motor patterns in vivo. Journal of Experimental Biology, 24, 3950–3961.

  • Zhao, S., Sheibanie, A. F., Oh, M., Rabbah, P., & Nadim, F. (2011). Peptide neuromodulation of synaptic dynamics in an oscillatory network. Journal of Neuroscience, 31, 13991–14004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by NIH MH060605 (FN), Kenny Fund Fellowship (NK), and NIH NS029436 (MPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzan Nadim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Frances K. Skinner

Appendix

Appendix

Below is the program code for the xpp file associated with the model. The changes in parameter values needed for some of the figures are listed as comments in the code.

figure afigure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kintos, N., Nusbaum, M.P. & Nadim, F. Convergent neuromodulation onto a network neuron can have divergent effects at the network level. J Comput Neurosci 40, 113–135 (2016). https://doi.org/10.1007/s10827-015-0587-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0587-z

Keywords

Navigation