Skip to main content
Log in

Cellular switches orchestrate rhythmic circuits

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Small inhibitory neuronal circuits have long been identified as key neuronal motifs to generate and modulate the coexisting rhythms of various motor functions. Our paper highlights the role of a cellular switching mechanism to orchestrate such circuits. The cellular switch makes the circuits reconfigurable, robust, adaptable, and externally controllable. Without this cellular mechanism, the circuit rhythms entirely rely on specific tunings of the synaptic connectivity, which makes them rigid, fragile, and difficult to control externally. We illustrate those properties on the much studied architecture of a small network controlling both the pyloric and gastric rhythms of crabs. The cellular switch is provided by a slow negative conductance often neglected in mathematical modeling of central pattern generators. We propose that this conductance is simple to model and key to computational studies of rhythmic circuit neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashby R (1952) Design for a brain: the origin of adaptive behavior. Wiley, Oxford

    Google Scholar 

  • Bargmann C, Marder E (2013) From the connectome to brain function. Nat Methods 10(6):483–490

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz A, Roberts A, Soffe S (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36

    PubMed  PubMed Central  Google Scholar 

  • Bucher D, Taylor AL, Marder E (2006) Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. J Neurophysiol 95(6):3617–3632

    Article  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-bötzinger complex. ii. Populations of coupled pacemaker neurons. J Neurophysiol 82(1):398–415

    Article  PubMed  Google Scholar 

  • Dai Y, Jordan L (2010) Multiple patterns and components of persistent inward current with serotonergic modulation in locomotor activity-related neurons in Cfos-EGFP mice. J Neurophysiol 103(4):1712–1727

    Article  PubMed  Google Scholar 

  • Daur N, Nadim F, Bucher D (2016) The complexity of small circuits: the stomatogastric nervous system. Curr Opin Neurobiol 41:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dethier J, Drion G, Franci A, Sepulchre R (2015) A positive feedback at the cellular level promotes robustness and modulation at the circuit level. J Neurophysiol 114:2472–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson P, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor-pattern generator circuits. Nature 344(6262):155

    Article  CAS  PubMed  Google Scholar 

  • Drion G, Franci A, Seutin V, Sepulchre R (2012) A novel phase portrait for neuronal excitability. PLoS ONE 7(8):e41,806

    Article  CAS  Google Scholar 

  • Drion G, Franci A, Dethier J, Sepulchre R (2015) Dynamic input conductances shape neuronal spiking. eNeuro. https://doi.org/10.1523/ENEURO.0031-14.2015

  • Drion G, Dethier J, Franci A, Sepulchre R (2018) Switchable slow cellular conductances determine robustness and tunability of network states. PLOS Comput Biol 14(4):e1006125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekman M, Derrfuss J, Tittgemeyer M, Fiebach C (2012) Predicting errors from reconfiguration patterns in human brain networks. Proc Natl Acad Sci USA 109(41):16,714–16,719

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franci A, Drion G, Sepulchre R (2012) An organizing center in a planar model of neuronal excitability. SIAM J Appl Dyn Syst 11(4):1698–1722

    Article  Google Scholar 

  • Franci A, Drion G, Seutin V, Sepulchre R (2013) A balance equation determines a switch in neuronal excitability. PLoS Comput Biol 9(5):e1003,040

    Article  CAS  Google Scholar 

  • Franci A, Drion G, Sepulchre R (2014) Modeling the modulation of neuronal bursting: a singularity theory approach. SIAM J Appl Dyn Syst 13(2):798–829

    Article  Google Scholar 

  • Franci A, Drion G, Sepulchre R (2018) Robust and tunable bursting requires slow positive feedback. J Neurophysiol 119(3):1222–1234. arXiv:1707.00664

  • Francis N, Winkowski D, Sheikhattar A, Armengol K, Babadi B, Kanold P (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Kistler W, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21(14):5229–5238

    Article  CAS  PubMed  Google Scholar 

  • Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78(3):1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Gordon I, Whelan P (2006) Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 96(6):3122–3129

    Article  PubMed  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4(7):573–586

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez G, O’Leary T, Marder EE (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77(5):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider B, McCormick D (2009) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick R (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21(5):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick R, Cohen A (1985) Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol 116(1):27–46

    CAS  PubMed  Google Scholar 

  • Hill A, Hooser SV, Calabrese R (2003) Half-center oscillators underlying rhythmic movements. MIT Press, Cambridge, pp 507–510

    Google Scholar 

  • Honey C, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10,240–10,245

    Article  CAS  Google Scholar 

  • Ijspeert A (2014) Biorobotics: Using robots to emulate and investigate agile locomotion. Science 346(6206):196–203

    Article  CAS  PubMed  Google Scholar 

  • Ijspeert A, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817):1416–1420

    Article  CAS  PubMed  Google Scholar 

  • Jordan L, Slawinska U (2011) Modulation of rhythmic movement: control of coordination, progress in brain research, vol 188. Elsevier, Amsterdam, pp 181–195

    Google Scholar 

  • Liu Z, Golowasch J, Marder E, Abbott L (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18(7):2309–2320

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Akay T, Hedlund P, Pearson K, Jordan L (2009) Spinal 5-ht7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-ht7 receptor knockout mice. J Neurophysiol 102(1):337–348

    Article  CAS  PubMed  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

  • Marder E, O’Leary T, Shruti S (2014) Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37:329–347

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Goeritz M, Otopalik A (2015) Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr Opin Neurobiol 31:156–163

    Article  CAS  PubMed  Google Scholar 

  • McLean D, Masino M, Koh I, Lindquist W, Fetcho J (2008) Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat Neurosci 11(12):1419–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mennes M, Kelly C, Colcombe S, Castellanos F, Milham M (2012) The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cereb Cortex 23(1):223–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating circuit with neurons of different networks. Nature 351(6321):60

    Article  CAS  PubMed  Google Scholar 

  • Pottelbergh TV, Drion G, Sepulchre R (2018) Robust modulation of integrate-and-fire models. Neural Comput 30(4):987–1011

    Article  PubMed  Google Scholar 

  • Prinz A, Billimoria C, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90(6):3998–4015

    Article  PubMed  Google Scholar 

  • Rodriguez J, Blitz D, Nusbaum M (2013) Convergent rhythm generation from divergent cellular mechanisms. J Neurosci 33(46):18,047–18,064

    Article  CAS  Google Scholar 

  • Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–35

    Article  PubMed  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963–76

    Article  CAS  PubMed  Google Scholar 

  • Weimann J, Marder E (1994) Switching neurons are integral members of multiple oscillatory networks. Curr Biol 4(10):896–902

    Article  CAS  PubMed  Google Scholar 

  • White R, Nusbaum M (2011) The same core rhythm generator underlies different rhythmic motor patterns. J Neurosci 31(32):11,484–11,494

    Article  CAS  Google Scholar 

  • Zhong G, Sharma K, Harris-Warrick R (2011) Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat Commun 2:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Drion.

Additional information

Communicated by Peter J. Thomas.

This article belongs to the Special Issue on Control Theory in Biology and Medicine. It derived from a workshop at the Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drion, G., Franci, A. & Sepulchre, R. Cellular switches orchestrate rhythmic circuits. Biol Cybern 113, 71–82 (2019). https://doi.org/10.1007/s00422-018-0778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0778-6

Keywords

Navigation