Skip to main content
Log in

Tunable optical filter with high performance based on 2D photonic crystal

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the performance of a new form of photonic crystal filter. The proposed filter consists of two waveguides and a resonator whose resonator section consists of a rectangular defect and two rods with different radii and refractive index. The structure consists of a two-dimensional square lattice with circular dielectric rods in the air bed. The final dimension of this filter is 60.86 μm2. The photonic crystal band structure calculations are performed using the plane wave expansion method. The finite difference time domain is used to propagate the electromagnetic field in the filter and plot the corresponding transmission spectra. The transmission efficiency, bandwidth, and quality factor at the resonant wavelength \(1582.2955\, \textrm{nm}\) are equal to \(93.6\%\), \(0.077\, \textrm{nm}\), and 20549.3, respectively. Also, the effect of different parameters on the wavelength selection behavior of the proposed filter is studied. The simplicity of design and integration capability is important features of this filter, and this feature makes this design suitable for optical telecommunication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results are not publicly available at this time, but can be obtained from the authors upon reasonable request.

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059 (1987)

    Article  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486 (1987)

    Article  Google Scholar 

  3. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Molding the Flow of Light. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  4. Skorobogatiy, M., Yang, J.: Fundamentals of Photonic Crystal Guiding. Cambridge university press (2009)

  5. Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quant. Electron. 52(6), 1–15 (2020)

    Article  Google Scholar 

  6. Wang, X., Shi, W., Grist, S., Yun, H., Jaeger, N.A., Chrostowski, L.: Narrow-band transmission filter using phase-shifted bragg gratings in soi waveguide. In: IEEE Photonic Society 24th Annual Meeting, pp. 869–870 (2011). IEEE

  7. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop filters in photonic crystals. Opt. Express 3(1), 4–11 (1998)

    Article  Google Scholar 

  8. Rahman, M.A., Islam, A.M.E.: Performance evaluation of an optical drop filter based on simple homogeneous photonics crystal resonator. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–4 (2019). IEEE

  9. Mirjalili, S.M., Mirjalili, S.Z.: Single-objective optimization framework for designing photonic crystal filters. Neural Comput. Appl. 28(6), 1463–1469 (2017)

    Article  Google Scholar 

  10. Hosseinzadeh, S., Tavakoli, M.A., Saeedi, N.: A novel asymetric structure for photonic crystal based all optical silicon logic or gate. Progr. Electromag. Res. Lett. 95, 143–146 (2021)

    Article  Google Scholar 

  11. Jayabarathan, J.K., Subhalakshmi, G., Robinson, S.: Performance evaluation of two dimensional photonic crystal based all optical and/or logic gates. J. Opt. Commun. 42(3), 397–407 (2021)

    Article  Google Scholar 

  12. Mohebzadeh-Bahabady, A., Olyaee, S.: Design and simulation of a new structure of integrated all optical and logic gate by using linear pc nano-resonator. In: 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC), pp. 127–130 (2019). IEEE

  13. Singh, B.R., Rawal, S.: Photonic-crystal based all optical not logic gate. JOSA A 32(12), 2260–2263 (2015)

    Article  Google Scholar 

  14. Harini, G., Harshini, R., Priya, R., et al.: An optimized design of optical logic gates for photonic integrated circuits. In: 2020 International Conference on Inventive Computation Technologies (ICICT), pp. 1128–1133 (2020). IEEE

  15. Zahravi, M., Zahravi, M., Alipour-Banaei, H.: All-optical switching in ultrashort photonic crystal couplers modified y-branch structure. J. Opt. Commun. 36(3), 205–209 (2015)

    Article  Google Scholar 

  16. Rajasekar, R., Parameshwari, K., Robinson, S.: Nano-optical switch based on photonic crystal ring resonator. Plasmonics 14(6), 1687–1697 (2019)

    Article  Google Scholar 

  17. Delphi, G., Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A.: Design of low cross-talk and high-quality-factor 2-channel and 4-channel optical demultiplexers based on photonic crystal nano-ring resonator. Photon Netw. Commun. 38(2), 250–257 (2019)

    Article  Google Scholar 

  18. Mohammadi, M., Seifouri, M.: A new proposal for a high-performance 4-channel demultiplexer based on 2d photonic crystal using three cascaded ring resonators for applications in advanced optical systems. Opt. Quant. Electron. 51(11), 1–15 (2019)

    Article  Google Scholar 

  19. Zhuang, Y., Ji, K., Zhou, W., Chen, H.: Design of a dwdm multi/demultiplexer based on 2-d photonic crystals. IEEE Photonics Technol. Lett. 28(15), 1669–1672 (2016)

    Article  Google Scholar 

  20. Sharma, G., Kumar, S., Prasad, S., Singh, V.: Theoretical modelling of one dimensional photonic crystal based optical demultiplexer. J. Mod. Opt. 63(10), 995–999 (2016)

    Article  Google Scholar 

  21. Gandhi, S.I., Sridarshini, T.: Design of photonic crystal based optical digital to analog converters. Laser Phys. 29(4), 046206 (2019)

    Article  Google Scholar 

  22. Naghizade, S., Saghaei, H.: An ultra-fast optical analog-to-digital converter using nonlinear x-shaped photonic crystal ring resonators. Opt. Quant. Electron. 53(3), 1–16 (2021)

    Google Scholar 

  23. Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (dac) using 2d photonic crystals. Opt. Commun. 402, 36–40 (2017)

    Article  Google Scholar 

  24. Sani, M.H., Khosroabadi, S., Nasserian, M.: High performance of an all optical two-bit analog-to-digital converter based on kerr effect nonlinear nanocavities. Appl. Opt. 59(4), 1049–1057 (2020)

    Article  Google Scholar 

  25. Huang, L., Tian, H., Zhou, J., Liu, Q., Zhang, P., Ji, Y.: Label-free optical sensor by designing a high-q photonic crystal ring-slot structure. Opt. Commun. 335, 73–77 (2015)

    Article  Google Scholar 

  26. Nair, R.V., Vijaya, R.: Photonic crystal sensors: An overview. Prog. Quant. Electron. 34(3), 89–134 (2010)

    Article  Google Scholar 

  27. Danaie, M., Nasiri Far, R., Dideban, A.: Design of a high-bandwidth y-shaped photonic crystal power splitter for te modes. Int. J. Opt. Photon. 12(1), 33–42 (2018)

    Article  Google Scholar 

  28. Mostafa, T., El-Rabaie, E.-S.: Literature review on all-optical photonic crystal encoders and some novel trends. Menoufia J. Electron. Eng. Res. 28(2), 153–184 (2019)

    Article  Google Scholar 

  29. Aidinis, K., Daraei, O.M., Goudarzi, K.: All-optical 1\(\times\) 2 decoder based on the self-collimated beam method in 2d photonic crystals. Photonics and Nanostructures-Fundamentals and Applications 43, 100880 (2021)

  30. Mahmoud, M.Y., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for cwdm communication systems. Optik 125(17), 4718–4721 (2014)

    Article  Google Scholar 

  31. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for dwdm systems. Physica E 87, 77–83 (2017)

    Article  Google Scholar 

  32. Moghaddam, M.K., Attari, A.R., Mirsalehi, M.M.: Improved photonic crystal directional coupler with short length. Photon. Nanostruct. Fundam. Appl. 8(1), 47–53 (2010)

    Article  Google Scholar 

  33. Feng, Z., Shao, C., Zhang, D.: Off-plane directional coupler in woodpile structure. Optik 126(24), 5213–5217 (2015)

    Article  Google Scholar 

  34. Xu, H., Zhong, R., Wang, X., Huang, X.: Dual-wavelength filters based on two-dimensional photonic crystal degenerate modes with a ring dielectric rod inside the defect cavity. Appl. Opt. 54(14), 4534–4541 (2015)

    Article  Google Scholar 

  35. Feng, S., Wang, Y.: Tunable multichannel drop filters based on the two-dimensional photonic crystal with oval defects. Optik 123(8), 688–691 (2012)

    Article  Google Scholar 

  36. Fallahi, V., Seifouri, M.: Design of a high-quality optical filter based on 2d photonic crystal ring resonator for wdm systems. J. Opt. Commun. 41(4), 355–361 (2020)

    Article  Google Scholar 

  37. Rebhi, S., Najjar, M.: High q-factor optical filter with high refractive index sensitivity based on hourglass-shaped photonic crystal ring resonator. Optik 202, 163663 (2020)

    Article  Google Scholar 

  38. Rezaei, B., Khalkhali, T.F., Vala, A.S., Kalafi, M.: Optimization of q-factor in direct-coupled cavity-waveguide photonic crystal structures. Optik 124(24), 7056–7061 (2013)

    Article  Google Scholar 

  39. Alipour-Banaei, H., Mehdizadeh, F.: High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photon Netw. Commun. 33(2), 152–158 (2017)

    Article  Google Scholar 

  40. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for dwdm systems. Physica E 87, 77–83 (2017)

    Article  Google Scholar 

  41. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on circular-shaped cavities. Photon Netw. Commun. 34(3), 468–477 (2017)

    Article  Google Scholar 

  42. Naghizade, S., Sattari-Esfahlan, S.: Excellent quality factor ultra-compact optical communication filter on ring-shaped cavity. J. Opt. Commun. 40(1), 21–25 (2019)

    Article  Google Scholar 

  43. Khoshtinat, A., Ghiamy, M.: Design of a new narrow band channel drop filter based on photonic crystal ring resonator. J. Artif. Intel. Electr. Eng. 6(23), 19–25 (2017)

    Google Scholar 

  44. Vaisi, A., Soroosh, M., Mahmoudi, A.: Low loss and high-quality factor optical filter using photonic crystal-based resonant cavity. J. Opt. Commun. 39(3), 285–288 (2018)

    Article  Google Scholar 

  45. Fallahi, V., Seifouri, M.: Design of a high-quality optical filter based on 2d photonic crystal ring resonator for wdm systems. J. Opt. Commun. 41(4), 355–361 (2020)

    Article  Google Scholar 

  46. Radhouene, M., Najjar, M., Janyani, V.: Novel design superelliptic photonic crystal ring resonator based on channel drop filter. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 1359–1363 (2020). IEEE

  47. Radhouene, M., Balaji, V., Najjar, M., Robinson, S., Janyani, V., Murugan, M.: Rounded square ring resonator based add drop filter for wdm applications using two dimensional photonic crystals. Opt. Quant. Electron. 53(5), 1–24 (2021)

    Article  Google Scholar 

  48. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Physica E 40(10), 3151–3154 (2008)

    Article  Google Scholar 

  49. Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018)

    Article  Google Scholar 

  50. Su, D., Pu, S., Mao, L., Wang, Z., Qian, K.: A photonic crystal magnetic field sensor using a shoulder-coupled resonant cavity infiltrated with magnetic fluid. Sensors 16(12), 2157 (2016)

    Article  Google Scholar 

  51. Pu, S., Bai, X., Wang, L.: Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids. J. Magn. Magn. Mater. 323(22), 2866–2871 (2011)

    Article  Google Scholar 

  52. Pu, S., Geng, T., Chen, X., Zeng, X., Liu, M., Di, Z.: Tuning the band gap of self-assembled superparamagnetic photonic crystals in colloidal magnetic fluids using external magnetic fields. J. Magn. Magn. Mater. 320(19), 2345–2349 (2008)

    Article  Google Scholar 

  53. Pu, S., Wang, H., Wang, N., Zeng, X.: Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability. Appl. Phys. B 112(2), 223–229 (2013)

    Article  Google Scholar 

  54. Pu, S., Wang, H., Wang, N., Zeng, X.: Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids. Opt. Commun. 311, 16–19 (2013)

    Article  Google Scholar 

Download references

Funding

Deputy for Research and Technology of Shahid Beheshti University (600/5290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Karimzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi Dangi, M., Mohammadzadeh Aghdam, A. & Karimzadeh, R. Tunable optical filter with high performance based on 2D photonic crystal. J Comput Electron 22, 849–855 (2023). https://doi.org/10.1007/s10825-023-02020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02020-0

Keywords

Navigation