Skip to main content
Log in

Rounded square ring resonator based add drop filter for WDM applications using two dimensional photonic crystals

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, Two Dimensional Photonic Crystals based Add Drop filter (ADF) is designed for DWDM applications. The existing work concentrates in Coarse Wavelength Division Multiplexing and few filters reported for DWDM with non-uniform channel spacing, and low quality factor. The proposed ADF enhances the quality factor using Rounded Square Ring Resonator (RSRR) for ensuring efficient bandwidth in supporting WDM systems. The design consists of bus waveguide, drop waveguide and RSRR with inner quasi-square ring in the square lattice. The dielectric constant of the Si rod is 11.68 which are hosted in the air. The line defect is created by removing 4 rods (Quasi ring) in the center of the inner square ring. The line defect in the ring resonator is used to reduce the radiation field components surrounded by the resonator. The performance parameters of ADF are investigated using 2D Finite Difference Time Domain algorithm. The proposed ADF drops a channel at 1636.2 nm, with the bandwidth of 0.7 nm, high quality factor of 2337, and the dropping efficiency of about 100%. The size of the device is 412.76 µm2. It is highly sufficient to support WDM systems for future Photonic Integrated Circuits (PIC). Further, the impact of functional parameters such as transmission efficiency, quality factor, bandwidth are investigated by varying the structural parameters, namely, adjacent rod radius, scatterer rod radius, coupling rod radius, lattice constant, inner rod radius and rod radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostruct. 56, 211–215 (2014b)

    Article  ADS  Google Scholar 

  • Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Optik 125(18), 5348–5351 (2014a)

    Article  ADS  Google Scholar 

  • Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis, J. Nanomater. 1–10 (2016)

  • Beggs, D.M., White, T.P., O’Faolain, L., Krauss, T.F.: Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33(2), 147–149 (2008)

    Article  ADS  Google Scholar 

  • Chew, W.C., Liu, Q.H.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Theor. Comput. Acoust. 4(04), 341–359 (1996)

    Article  Google Scholar 

  • Chhipa, M.K., Radhouene, M., Dikshit, A., Robinson, S., Suthar, B.: Novel compact optical channel drop filter for CWDM optical network applications. Int. J. Photonics Opt. Technol 2(4), 26–29 (2016)

    Google Scholar 

  • Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop filters in photonic crystals. Opt. Express 3(1), 4–11 (1998)

    Article  ADS  Google Scholar 

  • Fan, S., Wang, Z., Miller, D.A., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: Photonic crystal for communication applications. Active Passive Opt. Comp. WDM Commun. II 4870, 339–347 (2002)

    ADS  Google Scholar 

  • Fenzl, C., Hirsch, T., Wolfbeis, O.S.: Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. 53(13), 3318–3335 (2014)

    Article  Google Scholar 

  • Hsiao, F.L., Lee, C.:A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals. In: 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, p. 107–108 (2009)

  • Jiang, Y., Jiang, W., Gu, L., Chen, X., Chen, R.T.: 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett. 87(22), 221105-1 (2005)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals. Solid State Commun. 102(2–3), 65 (1997a)

    Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386(6621), 143–149 (1997b)

    Article  ADS  Google Scholar 

  • Kersey, A.D., Berkoff, T.A., Morey, W.W.: Multiplexed fiber Bragg grating strain–sensor system with a fiber Fabry–Perot wavelength filter. Opt. Lett. 18(16), 1370–1372 (1993)

    Article  ADS  Google Scholar 

  • Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285(3), 368–372 (2012)

    Article  ADS  Google Scholar 

  • Massoudi, R., Najjar, M., Mehdizadeh, F., Janyani, V.: Investigation of resonant mode sensitivity in PhC based ring resonators. Opt. Quantum Electron 51(3), 1–12 (2019)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2016)

    Article  Google Scholar 

  • Meier, M., Mekis, A., Dodabalapur, A., Timko, A., Slusher, R.E., Joannopoulos, J.D., Nalamasu, O.: Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74(1), 7–9 (1999)

    Article  ADS  Google Scholar 

  • Ohteru, S., Takachio, N.: Optical signal quality monitor using direct Q-factor measurement. IEEE Photon. Technol. Lett. 11(10), 1307–1309 (1999)

    Article  ADS  Google Scholar 

  • Park, S.J., Lee, C.H., Jeong, K.T., Park, H.J., Ahn, J.G., Song, K.H.: Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J. Light. Technol. 22(11), 2582–2591 (2004)

    Article  ADS  Google Scholar 

  • Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15(4), 1823–1831 (2007)

    Article  ADS  Google Scholar 

  • Qiu, M.: Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microw. Opt. Technol. Lett. 30(5), 327–330 (2001)

    Article  Google Scholar 

  • Rajasekar, R., Robinson, S.: Trapezoid 2D photonic crystal nanoring resonator-based channel drop filter for WDM systems. Photonic Netw. Commun. 36(2), 230–245 (2018)

    Article  Google Scholar 

  • Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)

    Article  ADS  Google Scholar 

  • Rayleigh, L.: XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Philos. Mag. 24(147), 145–159 (1887)

    Article  Google Scholar 

  • Rezaee, S., Zavvari, Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Optik 126(20), 2535–3538 (2015)

    Article  ADS  Google Scholar 

  • Robinson, S., Nakkeeran, R.: Two dimensional photonic crystal ring resonator based add drop filter for CWDM systems. Optik 124(18), 3430–3435 (2018)

    Article  ADS  Google Scholar 

  • Sathyadevaki, R., Raja, A.S.: Photonic crystal-based optical filter: a brief investigation. Photonic Netw. Commun. 33(1), 77–84 (2017)

    Article  Google Scholar 

  • Shahidinejad, A.: Soliton pulse generation for WDM-based free space optics communication using microring resonators. J. Opt. Commun. 25(1), 59–64 (2018)

    Article  Google Scholar 

  • Shi, S., Chen, C., Prather, W.: Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J. Opt. Soc. Am. A 21(9), 1769–1775 (2004)

    Article  ADS  Google Scholar 

  • Sun, S.: A dual-band bandpass filter using a single dual-mode ring resonator. IEEE Microw. Wirel. Compon. Lett. 21(6), 298–300 (2011)

    Article  Google Scholar 

  • Tran, A.T.T.D., Lo, Y.H., Zhu, Z.H., Haronian, D., Mozdy, E.: Surface micromachined Fabry–Perot tunable filter. IEEE Photonics Technol. Lett. 8(3), 393–395 (1996)

    Article  ADS  Google Scholar 

  • Wooten, E.L., Stone, R.L., Miles, E.W., Bradley, E.M.: Rapidly tunable narrowband wavelength filter using LiNbO/sub 3/unbalanced Mach–Zehnder interferometers. J. Light. Technol. 14(11), 2530–2536 (1996)

    Article  ADS  Google Scholar 

  • Xiao, S., Vahldieck, R.: An efficient 2-D FDTD algorithm using real variables (guided wave structure analysis). IEEE Microw. Wirel. Compon. Lett. 3(5), 127–129 (1993)

    Google Scholar 

  • Zhang, Y., Zhang, Y., Li, B.: Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15(15), 9287–9292 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Balaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhouene, M., Balaji, V.R., Najjar, M. et al. Rounded square ring resonator based add drop filter for WDM applications using two dimensional photonic crystals. Opt Quant Electron 53, 273 (2021). https://doi.org/10.1007/s11082-021-02924-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02924-w

Keywords

Navigation