Skip to main content
Log in

Photonic crystal channel drop filters based on circular-shaped cavities

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper presents a novel photonic crystal-based channel drop filter in a silicon-on-insulator platform. The proposed structure consists of two line-defect waveguides and a special circular cavity between them. The effects of structural parameters and fabrication errors on resonant wavelength and drop efficiency of output signal are analyzed. Band structure calculations and propagation of electromagnetic field through device are done by plane wave expansion and finite-difference time-domain methods, respectively. In our design, drop efficiency of more than 81% and quality factor of about 2246 are achievable. Simulation results show the effectiveness of the proposed filter for narrowband applications in photonic communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987). doi:10.1103/PhysRevLett.58.2059

    Article  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987). doi:10.1103/PhysRevLett.58.2486

    Article  Google Scholar 

  3. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013). doi:10.1016/j.physe.2013.03.003

    Article  Google Scholar 

  4. Thylén, L., Qiu, M., Anand, S.: Photonic crystals-a step towards integrated circuits for photonics. J. Chem. Phys. 5, 1268 (2004). doi:10.1002/cphc.200301075

    Google Scholar 

  5. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983 (2009). doi:10.1364/OE.17.008983

    Article  Google Scholar 

  6. Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2001)

    Book  Google Scholar 

  7. Moreolo, M.S., Morra, V., Cincotti, G.: Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides. J. Opt. A Pure Appl. Opt. 10, 064002 (2008). doi:10.1088/1464-4258/11/5/054010

    Article  Google Scholar 

  8. Liu, T., Zakharian, A.R., Fallahi, M., Moloney, J.V., Mansuripur, M.: Design of a compact photonic-crystal-based polarizing beam splitter. IEEE Photonics Technol. Lett. 17, 1435 (2005). doi:10.1109/LPT.2005.848278

    Article  Google Scholar 

  9. Yamamoto, N., Ogawa, T., Komori, K.: Photonic crystal directional coupler switch with small switching length and wide bandwidth. Opt. Express 14, 1223 (2006). doi:10.1364/OE.14.001223

    Article  Google Scholar 

  10. Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.S.: Analysis of photonic crystal power splitters with different configurations. J. Appl. Sci. 8, 1416 (2008). doi:10.1088/1464-4258/10/7/075203

    Article  Google Scholar 

  11. Thomson, D.J., Gardes, F.Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., Fedeli, J.M., Reed, G.T.: High contrast 40 Gbit/s optical modulation in silicon. Opt. Express 19, 11507 (2011). doi:10.1364/OE.19.011507

    Article  Google Scholar 

  12. Calò, G., Petruzzelli, V.: Wavelength routers for optical networks-on-chip using optimized photonic crystal ring resonators. IEEE Photonics J. 5, 3 (2013). doi:10.1109/JPHOT.2013.2264278

    Article  Google Scholar 

  13. Lu, J., Ren, H., Guo, S., Wu, Z., Qin, Y., Hu, W., Jiang, C.: Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities. Opt. Int. J. Light Electron Opt. 127, 3235 (2016). doi:10.1016/j.ijleo.2015.11.235

    Article  Google Scholar 

  14. Calò, G., Petruzzelli, V.: Compact design of photonic crystal ring resonator 2\(\times \)2 routers as building blocks for photonic networks on chip. J. Opt. Soc. Am. B 31, 3 (2014). doi:10.1364/JOSAB.31.000517

    Article  Google Scholar 

  15. Habibiyan, H., Ghafoori-Fard, H., Rostami, A.: Tunable all-optical photonic crystal channel drop filter for DWDM systems. J. Opt. A Pure Appl. Opt. 11, 065102 (2009). doi:10.1088/1464-4258/11/6/065102

    Article  Google Scholar 

  16. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostruct. 87, 77 (2017). doi:10.1016/j.physe.2016.11.022

    Article  Google Scholar 

  17. Chien, F.S., Cheng, S.C., Hsu, Y., Hsieh, W.F.: Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications. Opt. Commun. 266, 592 (2006). doi:10.1016/j.optcom.2006.05.055

    Article  Google Scholar 

  18. Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol. 19, 1970 (2001). doi:10.1109/50.971693

    Article  Google Scholar 

  19. Wu, Y.D., Huang, M.L., Shih, T.T.: Optical interleavers based on two-dimensional photonic crystals. Appl. Opt. 46, 7212 (2007). doi:10.1364/AO.46.007212

    Article  Google Scholar 

  20. Ghaffari, A., Djavid, M., Monifi, F., Abrishamian, M.S.: Photonic crystal power splitter and wavelength multi/demultiplexer based on directional coupling. J. Opt. A Pure Appl. Opt. 10, 075203 (2008). doi:10.1088/1464-4258/10/7/075203

    Article  Google Scholar 

  21. Li, S., Liu, H., Sun, Q., Huang, N.: Multi-channel terahertz wavelength division demultiplexer with defects-coupled photonic crystal waveguide. J. Mod. Opt. 63, 955 (2016). doi:10.1080/09500340.2015.1111457

    Article  Google Scholar 

  22. Lu, Y., Liu, H., Sun, Q., Huang, N., Wang, Z.: Terahertz narrow-band filter based on rectangle photonic crystal. J. Mod. Opt. 63, 224 (2016). doi:10.1080/09500340.2015.1073808

    Article  Google Scholar 

  23. Fan, S., Villeneuve, P.R., Joannopoulos, H.A., Haus, M.S.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960 (1998). doi:10.1103/PhysRevLett.80.960

    Article  Google Scholar 

  24. Xu, X., Qiang, Z., Jiang, J., Chen, X., Li, H., Qiu, Y.: Modal analysis of ultra-compact channel filters based on race-track photonic crystal ring resonators. J. Mod. Opt. 58, 932 (2011). doi:10.1080/09500340.2011.581766

    Article  Google Scholar 

  25. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5923 (2013). doi:10.1016/j.ijleo.2013.04.128

    Article  Google Scholar 

  26. Robinson, S., Nakkeeran, R.: Characteristics of add drop filter using single and dual PCRR in square lattice. Opt. Int. J. Light Electron Opt. 124, 5918 (2013). doi:10.1016/j.ijleo.2013.04.129

    Article  Google Scholar 

  27. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (2013). doi:10.1016/j.ijleo.2012.07.029

    Article  Google Scholar 

  28. Bai, J., Wang, J., Ni, B., Jiang, J., Chen, X., Qiu, Y., Qiang, Z.: Optical channel drop filters based on \(45^{\circ }\) photonic crystal ring resonators. SPIE 7631, 763122 (2009). doi:10.1117/12.851267

    Google Scholar 

  29. Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Opt. Int. J. Light Electron Opt. 124, 2966 (2013). doi:10.1016/j.ijleo.2012.09.012

    Article  Google Scholar 

  30. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, M.Z.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368 (2012). doi:10.1016/j.optcom.2011.09.068

  31. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823 (2007). doi:10.1364/OE.15.001823

    Article  Google Scholar 

  32. Zhang, Z., Qiu, M.: Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs. Opt. Express 13, 2596 (2005). doi:10.1364/OPEX.13.002596

    Article  Google Scholar 

  33. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Tunable channel drop filter using hexagonal photonic crystal ring resonators. Telkomnika 11, 513 (2013). doi:10.11591/telkomnika.v11i1.1788

    Article  Google Scholar 

  34. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5964 (2013). doi:10.1016/j.ijleo.2013.04.117

    Article  MATH  Google Scholar 

  35. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostruct. 56, 211 (2014). doi:10.1016/j.physe.2013.07.018

    Article  Google Scholar 

  36. Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 824 (2014). doi:10.1016/j.ijleo.2012.01.045

    Article  Google Scholar 

  37. Rashki, Z., Seyyed Mahdavi Chabok, S.J.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231 (2017). doi:10.1016/j.optcom.2016.08.077

  38. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostruct. 63, 304 (2014). doi:10.1016/j.physe.2014.06.009

    Article  Google Scholar 

  39. Rostami, A., Haddadpour, A., Nazari, F., Alipour, H.: Proposal for an ultracompact tunable wavelength-division-multiplexing optical filter based on quasi-2D photonic crystals. J. Opt. 12, 015405 (2010). doi:10.1088/2040-8978/12/1/015405

    Article  Google Scholar 

  40. Baba, T., Motegi, A., Iwai, T., Fukaya, N., Watanabe, Y., Sakai, A.: Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron. 38, 743 (2002). doi:10.1109/JQE.2002.1017584

    Article  Google Scholar 

  41. Tokushima, M., Yamada, H.: Light propagation in a photonic-crystal-slab line-defect waveguide. IEEE J. Quantum Electron. 38, 753 (2002). doi:10.1109/JQE.2002.1017585

    Article  Google Scholar 

  42. Roh, Y.G., Yoon, S., Jeon, H.: In-plane multichannel drop filter built in a homogeneous two-dimensional photonic crystal. J. Korean Phys. Soc. 50, 444 (2007). doi:10.3938/jkps.50.444

    Article  Google Scholar 

  43. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998 (1997). doi:10.1109/50.588673

    Article  Google Scholar 

  44. Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. 2, 199 (2004). doi:10.1016/j.photonics.2004.11.001

    Article  Google Scholar 

  45. Shinya, A., Mitsugi, S., Kuramochi, E., Notomi, M.: Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide. Opt. Express 13, 4202 (2005). doi:10.1364/OPEX.13.004202

    Article  Google Scholar 

  46. Kim, S., Park, I., Lim, H., Kee, C.S.: Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback. Opt. Express 12, 5518 (2004). doi:10.1364/OPEX.12.005518

    Article  Google Scholar 

  47. Yang, L., Motohisa, J., Fukui, T., Kee, C.S.: Suggested procedure for the use of the effective-index method for high-index-contrast photonic crystal slabs. Opt. Eng. 44, 078002 (2005). doi:10.1117/1.1949115

    Article  Google Scholar 

  48. Qiu, M.: Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163 (2002). doi:10.1063/1.1500774

    Article  Google Scholar 

  49. Schulz, S.A., Park, A.H.K., De Leon, I., Upham, J., Boyd, R.W.: Beyond the effective index method: improved accuracy for 2D simulations of photonic crystal waveguides. J. Opt. 17, 075006 (2015). doi:10.1088/2040-8978/17/7/075006

    Article  Google Scholar 

  50. Khadri, D., Belhadj, W., Gamra, D., AbdelMalek, F., Bouchriha, H.: On the validity of the effective index method for long period grating photonic crystal fibers. Mater. Sci. Appl. 3, 310 (2012). doi:10.4236/msa.2012.35046

    Google Scholar 

  51. Bernier, D., Roux, X.L., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008). doi:10.1364/OE.16.017209

    Article  Google Scholar 

  52. Varmazyari, V., Habibiyan, H., Ghafoorifard, H.: All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides. Appl. Opt. 52, 26 (2013). doi:10.1364/AO.52.006497

    Article  Google Scholar 

  53. Ooka, Y., Tetsumoto, T., Fushimi, A., Yoshiki, W., Tanabe, T.: CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform. Sci. Rep. 5, 11312 (2015). doi:10.1038/srep11312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Habibiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dideban, A., Habibiyan, H. & Ghafoorifard, H. Photonic crystal channel drop filters based on circular-shaped cavities. Photon Netw Commun 34, 468–477 (2017). https://doi.org/10.1007/s11107-017-0708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0708-x

Keywords

Navigation