Skip to main content
Log in

A new method for reversible circuit synthesis using a Simulated Annealing algorithm and don’t-cares

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The synthesis of reversible circuits is a challenge on which many studies have been conducted. Different algorithms attempt to propose a more optimal implementation for each description of a reversible circuit, using reversible gates. In this paper, an algorithm is proposed which, by a heuristic method using a Simulated Annealing algorithm, tries to find a near-optimal circuit to the given truth table. Unlike previous methods, this method does not necessarily require a correct initial circuit to improve it. It can start from a correct circuit or a near-correct circuit or even from an empty circuit, and tries to get a circuit that is better than the initial circuit. It can also achieve different circuits in different runs that are better than the initial circuit. Finally, from the various circuits that this algorithm has produced in different runs, the best is selected as the final circuit. The proposed algorithm also tries to produce a circuit as simple as possible with respect to don’t-care combinations. Also, the current algorithm does not depend on the type of gates. Any library, including arbitrary reversible gates, can be used in this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–91 (1961)

    Article  MathSciNet  Google Scholar 

  2. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM JETC 6(4), 13 (2010)

    Google Scholar 

  3. Bhagyalakshmi, H.R., Venkatesha, M.K.: An improved design of a multiplier using reversible logic gates. Int. J. Eng. Sci. Technol. 2(8), 3838–45 (2010)

    Google Scholar 

  4. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451) 2003 Jun 2. IEEE, pp. 318–323

  5. Sasanian, Z., Saeedi, M., Sedighi, M., Zamani, M.S.: A cycle-based synthesis algorithm for reversible logic. In: Proceedings of the 2009 Asia and South Pacific Design Automation Conference 2009 Jan 19. IEEE Press, pp. 745–750

  6. Datta, K., Gokhale, A., Sengupta, I., Rahaman, H.: An ESOP-based reversible circuit synthesis flow using simulated annealing. In: Applied Computation and Security Systems 2015. Springer, New Delhi, pp. 131–144

  7. Abdessaied, N., Soeken, M., Dueck, G.W., Drechsler, R.: Reversible circuit rewriting with simulated annealing. In: 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC) 2015 Oct 5. IEEE, pp. 286–291

  8. Mohammadi, M., Eshghi, M.: Heuristic methods to use don’t cares in automated design of reversible and quantum logic circuits. Quantum Inf. Process. 7(4), 175–92 (2008)

    Article  MathSciNet  Google Scholar 

  9. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  10. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  11. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  12. Jamal, L., Shamsujjoha, M., Babu, H.H.: Design of optimal reversible carry look-ahead adder with optimal garbage and quantum cost. Int. J. Eng. Technol. 2(1), 44–50 (2012)

    Article  Google Scholar 

  13. Lee, S., Lee, S.J., Kim, T., Lee, J.S., Biamonte, J., Perkowski, M.: The cost of quantum gate primitives. J. Multiple Valued Log. Soft Comput. 1, 12 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  Google Scholar 

  15. Maslov, D., Dueck, G.W.: Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 39(25), 1790–1 (2003)

    Article  Google Scholar 

  16. Osman, M., Younes, A., Ismail, G., Farouk, R.: An improved design of n-bit universal reversible gate library. Int. J. Theor. Phys. 58, 25311–2549 (2019)

    Article  MathSciNet  Google Scholar 

  17. Monfared, A.T., Haghparast, M., Datta, K.: Quaternary quantum/reversible half-adder, full-adder, parallel adder and parallel adder/subtractor circuits. Int. J. Theor. Phys. 58, 2184–2199 (2019)

    Article  MathSciNet  Google Scholar 

  18. Gaur, H.M., Singh, A.K., Ghanekar, U.: Simplification and modification of multiple controlled Toffoli circuits for testability. J. Comput. Electron. 18(1), 356–63 (2019)

    Article  Google Scholar 

  19. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits–a survey. ACM CSUR 45(2), 21 (2013)

    MATH  Google Scholar 

  20. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–22 (2003)

    Article  Google Scholar 

  21. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible circuits. In: Design Automation Conference 2010 Jun 13. IEEE, pp. 653–656

  22. Tara, N., Babu, H.M.: Synthesis of reversible PLA using products sharing. J. Comput. Electron. 15(2), 420–8 (2016)

    Article  Google Scholar 

  23. Zhu, W., Li, Z., Zhang, G., Pan, S., Zhang, W.: A reversible logical circuit synthesis algorithm based on decomposition of cycle representations of permutations. Int. J. Theor. Phys. 57(8), 2466–74 (2018)

    Article  MathSciNet  Google Scholar 

  24. Li, Z., Chen, S., Song, X., Perkowski, M., Chen, H., Zhu, W.: Quantum circuit synthesis using a new quantum logic gate library of NCV quantum gates. Int. J. Theor. Phys. 56(4), 1023–38 (2017)

    Article  Google Scholar 

  25. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and Applications. Springer, Dordrecht, pp. 7–15 (1987)

  26. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–80 (1983)

    Article  MathSciNet  Google Scholar 

  27. Wille, R., Große, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design 2009 Jan 5. IEEE, pp. 189–194

  28. http://webhome.cs.uvic.ca/~dmaslov/

  29. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(3), 436–44 (2008)

    Article  Google Scholar 

  30. Szyprowski, M., Kerntopf, P.: Reducing quantum cost in reversible Toffoli circuits. arXiv preprint arXiv:1105.5831. 2011 May 29

  31. Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin/Toffoli templates for reversible logic synthesis. In: Proceedings of the 2003 IEEE/ACM International Conference on Computer-Aided Design 2003 Nov 9. IEEE Computer Society, p. 256

  32. Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin–Toffoli reversible networks. IEEE Trans. VLSI Syst. 13(6), 765-9 (2005)

    Article  Google Scholar 

  33. Maslov, D.A.: Reversible Logic Synthesis. Doctoral dissertation, University of New Brunswick, Faculty of Computer Science

  34. Arabzadeh, M., Saeedi, M.: RCViewer+: a viewer/analyzer for reversible and quantum circuits (2018)

  35. Abubakar, M.Y., Jung, L.T., Zakaria, N., Younes, A., Abdel-Aty, A.H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16(6), 160 (2017)

    Article  MathSciNet  Google Scholar 

  36. Miller, D.M., Dueck, G.W., Maslov, D.: A synthesis method for MVL reversible logic [multiple value logic]. In: Proceedings of 34th International Symposium on Multiple-Valued Logic 2004 May 22. IEEE, pp. 74–80

  37. Younes, A.: Synthesis and optimization of reversible circuits for homogeneous Boolean functions. arXiv preprint arXiv:0710.0664. (2007)

  38. Zakablukov, D.V.: Application of permutation group theory in reversible logic synthesis. In: International Conference on Reversible Computation Jul 7. Springer, Cham, pp. 223–238 (2016)

  39. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(6), 807–17 (2005)

    Article  Google Scholar 

  40. Maslov, D., Miller, D.M., Dueck, G.W.: Templates for reversible circuit simplification. In: PACRIM 2005 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2005. 2005 Aug 24. IEEE, pp. 609–612

  41. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–53 (2011)

    Article  MathSciNet  Google Scholar 

  42. Dueck, G.W., Maslov, D.: Reversible function synthesis with minimum garbage outputs. In: 6th International Symposium on Representations and Methodology of Future Computing Technologies 2003 Mar 10, pp. 154–161

  43. Miller, D.M., Dueck, G.W.: Spectral techniques for reversible logic synthesis. In: 6th International Symposium on Representations and Methodology of Future Computing Technologies 2003 Mar 10, pp. 56–62

  44. Markov, I.: Book Review: A physical-design picture book. IEEE Des. Test Comput. 26(4), 100–1 (2009)

    Article  Google Scholar 

  45. Szyprowski, M., Kerntopf, P.: An approach to quantum cost optimization in reversible circuits. In: 2011 11th IEEE International Conference on Nanotechnology 2011 Aug 15. IEEE, pp. 1521–1526

  46. Wang, X., Jiao, L., Li, Y., Qi, Y., Wu, J.: A variable-length chromosome evolutionary algorithm for reversible circuit synthesis. J. Multiple Valued Log. Soft Comput. 25(6), 643–671 (2015)

    MathSciNet  Google Scholar 

  47. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In: Workshop on Quantum Computation, Communication, and Cryptography. Springer, Berlin, Heidelberg, pp. 96–104 (2008)

  48. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An O (m 2)-depth quantum algorithm for the elliptic curve discrete logarithm problem over GF (2 m) a. Quantum Inf. Comput. 9(7), 610–21 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530 (2009)

  50. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–31 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Etemadi Borujeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidi, S.M., Etemadi Borujeni, S. A new method for reversible circuit synthesis using a Simulated Annealing algorithm and don’t-cares. J Comput Electron 20, 718–734 (2021). https://doi.org/10.1007/s10825-020-01620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01620-4

Keywords

Navigation