Skip to main content
Log in

An accurate and generic window function for nonlinear memristor models

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Memristors have become promising candidates for the advancement of recent technology as the miniaturization of complementary metal–oxide–semiconductor (CMOS) technology approaches its final stage. Nanoscale size, easy fabrication, compatibility with MOS, and diverse applications have accelerated these devices to new levels. In this paper, we discuss the merits and demerits of existing window functions and propose a novel window function that addresses their limitations. The suggested window function exhibits high nonlinearity at the boundaries and resolves other boundary issues. The results obtained using the proposed window function are compared with data reported in the literature to validate our design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Widrow, B.: An Adaptive “ADALINE” Neuron Using Chemical “Memistors”. Stanford Electronics Laboratories Technical Report, No. 1553-2 (1960)

  3. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  4. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  5. Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  Google Scholar 

  6. Lehtonen, E., Laiho, M.: BCNN using memristors for neighborhood connections. In: Proceedings of 12th International Workshop on Cellular Nanoscale Networks and Their Applications (2010)

  7. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E., Rogers, S.: A memristor device model. IEEE Electron Device Lett. 32(10), 1436–1438 (2011)

    Article  Google Scholar 

  8. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 1–6 (2009)

    Article  Google Scholar 

  9. Abdalla, H., Pickett, M.D.: SPICE modeling of memristors. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011)

  10. Biolek, Z., Biolek, D., Biolkova, V.: Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    MATH  Google Scholar 

  11. Biolek, D., Di Ventra, M., Pershin, Y.V.: Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4), 945–968 (2013)

    Google Scholar 

  12. Vourkas, I., Batsos, A., ChSirakoulis, G.: SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 43(5), 553–565 (2015)

    Article  Google Scholar 

  13. Pershin, Y.V., Di Ventra, M.: SPICE model of memristive devices with threshold. Radioengineering 22(2), 485–489 (2013)

    Google Scholar 

  14. Benderli, S., Wey, T.A.: On SPICE macro modeling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)

    Article  Google Scholar 

  15. Rák, Á., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  16. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Exp. Briefs 62(8), 786–790 (2015)

    Article  Google Scholar 

  18. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  19. Waser, R., Dittimann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories-nanoionic mechanisms, prospects and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  20. Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2009)

    Article  Google Scholar 

  21. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)

    Article  MATH  Google Scholar 

  22. Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  23. Zha, J., Huang, H., Liu, Y.: A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Circuits Syst. II Exp. Briefs 63(5), 423–427 (2016)

    Article  Google Scholar 

  24. Blanc, J., Staebler, D.L.: Electrocoloration in SrTiO3: vacancy drift and oxidation–reduction of transition metals. Phys. Rev. B 4(10), 3548–3557 (1971)

    Article  Google Scholar 

  25. Alvbrant, J., Keshmiri, V., Wikner, J.J.: Transfer characteristics and bandwidth limitation in a linear-drift memristor model. In: 2015 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2015)

  26. Butusov, D.N., Ostrovskii, V.Y., Zubarev, A.V.: Study of two-memristor circuit model with explicit composition method. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2017, pp. 206–209. IEEE (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeetendra Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Raj, B. An accurate and generic window function for nonlinear memristor models. J Comput Electron 18, 640–647 (2019). https://doi.org/10.1007/s10825-019-01306-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01306-6

Keywords

Navigation