Skip to main content

Memristors: Properties, Models, Materials

  • Chapter
  • First Online:
Deep Learning Classifiers with Memristive Networks

Abstract

The practical realization of neuro-memristive systems requires highly accurate simulation models, robust devices and validations on device characteristics. This chapter covers the basics of memristor characteristics, models and a succinct review of practically realized memristive devices. Memristors represent a class of two terminal resistive switching multi-state memory devices that can be compatible with existing integrated circuit technologies. The modeling of memristors for very large scale simulations requires to accurately capture process variations and other non-idealities from real devices for ensuring the validity of deep neural network architecture designs with memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abunahla H, Jaoude MA, O’Kelly CJ, Halawani Y, Al-Qutayri M, Al-Sarawi SF, Mohammad B (2018) Switching characteristics of microscale unipolar pd/hf/hfo2/pd memristors. Microelectron Eng 185:35–42

    Article  Google Scholar 

  2. Ageev O, Blinov YF, Ilin O, Kolomiitsev A, Konoplev B, Rubashkina M, Smirnov V, Fedotov A (2013) Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy. Tech Phys 58(12):1831–1836

    Article  Google Scholar 

  3. Åkerman J (2005) Toward a universal memory. Science 308(5721):508–510

    Article  Google Scholar 

  4. Al-Shedivat M, Naous R, Cauwenberghs G, Salama KN (2015) Memristors empower spiking neurons with stochasticity. IEEE J Emerg Sel Top Circuits Syst 5(2):242–253

    Article  Google Scholar 

  5. Amer S, Sayyaparaju S, Rose GS, Beckmann K, Cady NC (2017) A practical hafnium-oxide memristor model suitable for circuit design and simulation. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4

    Google Scholar 

  6. Ascoli A, Corinto F, Tetzlaff R (2016) A class of versatile circuits, made up of standard electrical components, are memristors. Int J Circuit Theory Appl 44(1):127–146

    Article  Google Scholar 

  7. Ascoli A, Tetzlaff R, Biolek Z, Kolka Z, Biolkova V, Biolek D (2015) The art of finding accurate memristor model solutions. IEEE J Emerg Sel Top Circuits Syst 5(2):133–142

    Article  Google Scholar 

  8. Bashara N, Nielsen P (1963) Memory effects in thin film negative resistance structures. In: Annual report 1963 conference on electrical insulation. IEEE, pp 29–32

    Google Scholar 

  9. Bayat FM, Hoskins B, Strukov DB (2015) Phenomenological modeling of memristive devices. Appl Phys A 118(3):779–786

    Article  Google Scholar 

  10. Beck A, Bednorz J, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77(1):139–141

    Article  Google Scholar 

  11. Berdan R, Lim C, Khiat A, Papavassiliou C, Prodromakis T (2014) A memristor spice model accounting for volatile characteristics of practical ReRAM. IEEE Electron Device Lett 35(1):135–137

    Article  Google Scholar 

  12. Berdan R, Prodromakis T, Khiat A, Salaoru I, Toumazou C, Perez-Diaz F, Vasilaki E (2013) Temporal processing with volatile memristors. In: 2013 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 425–428

    Google Scholar 

  13. Berdan R, Vasilaki E, Khiat A, Indiveri G, Serb A, Prodromakis T (2016) Emulating short-term synaptic dynamics with memristive devices. Sci Rep 6:18639

    Article  Google Scholar 

  14. Berzina T, Smerieri A, Bernabò M, Pucci A, Ruggeri G, Erokhin V, Fontana M (2009) Optimization of an organic memristor as an adaptive memory element. J Appl Phys 105(12):124515

    Article  Google Scholar 

  15. Biolek D, Biolek Z, Biolkova V, Kolka Z (2015) Reliable modeling of ideal generic memristors via state-space transformation. Radioengineering 24(2):393–407

    Article  Google Scholar 

  16. Biolek D, Kolka Z, Biolková V, Biolek Z, Potrebić M, Tošić D (2018) Modeling and simulation of large memristive networks. Int J Circuit Theory Appl 46(1):50–65

    Article  Google Scholar 

  17. Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2)

    Google Scholar 

  18. Bruce J, Hickling A (1939) Electrical conduction of commercial boron crystals. Trans Faraday Soc 35:1436–1439

    Article  Google Scholar 

  19. Campbell KA (2015) Carbon-chalcogenide variable resistance memory device. US Patent 9,118,006

    Google Scholar 

  20. Campbell KA (2017) Self-directed channel memristor for high temperature operation. Microelectron J 59:10–14

    Article  Google Scholar 

  21. Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, Lu W (2011) Synaptic behaviors and modeling of a metal oxide memristive device. Appl Phys A 102(4):857–863

    Article  Google Scholar 

  22. Chang YF, Fowler B, Chen YC, Lee JC (2016) Proton exchange reactions in siox-based resistive switching memory: review and insights from impedance spectroscopy. Prog Solid State Chem 44(3):75–85

    Article  Google Scholar 

  23. Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND et al (2012) A ferroelectric memristor. Nat Mater 11(10):860

    Article  Google Scholar 

  24. Chen Y, Liu G, Wang C, Zhang W, Li RW, Wang L (2014) Polymer memristor for information storage and neuromorphic applications. Mater Horiz 1(5):489–506

    Article  Google Scholar 

  25. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  26. Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102(4):765–783

    Article  MATH  Google Scholar 

  27. Chua L (2018) Five non-volatile memristor enigmas solved. Appl Phys A 124(8):563

    Article  Google Scholar 

  28. Dorosheva IB, Vokhmintsev AS, Kamalov RV, Gryaznov AO, Weinstein IA (2018) Oxide layer thickness effects on the resistance switching characteristics of ti/tio 2-nt/au structure. In: 2018 Ural symposium on biomedical engineering, radioelectronics and information technology (USBEREIT). IEEE, pp 279–282

    Google Scholar 

  29. Edwards AH, Barnaby HJ, Campbell KA, Kozicki MN, Liu W, Marinella MJ (2015) Reconfigurable memristive device technologies. Proc IEEE 103(7):1004–1033

    Article  Google Scholar 

  30. Engel B, Akerman J, Butcher B, Dave R, DeHerrera M, Durlam M, Grynkewich G, Janesky J, Pietambaram S, Rizzo N et al (2005) A 4-mb toggle mram based on a novel bit and switching method. IEEE Trans Magn 41(1):132–136

    Article  Google Scholar 

  31. Eshraghian JK, Cho K, Iu HHC, Fernando T, Iannella N, Kang S, Eshraghian K (2017) Maximization of crossbar array memory using fundamental memristor theory. IEEE Trans Circuits Syst II: Express Briefs 64(12):1402–1406. https://doi.org/10.1109/TCSII.2017.2767078

    Article  Google Scholar 

  32. Eshraghian JK, Iu HH, Fernando T, Yu D, Li Z (2016) Modelling and characterization of dynamic behavior of coupled memristor circuits. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 690–693 (2016)

    Google Scholar 

  33. Eshraghian K, Kavehei O, Cho KR, Chappell JM, Iqbal A, Al-Sarawi SF, Abbott D (2012) Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc IEEE 100(6):1991–2007

    Article  Google Scholar 

  34. Ferreira AP, Zhou M, Bock S, Childers B, Melhem R., Mossé, D (2010) Increasing pcm main memory lifetime. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, pp 914–919

    Google Scholar 

  35. García-Redondo F, Gowers RP, Crespo-Yepes A, López-Vallejo M, Jiang L (2016) Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Trans Circuits Syst I: Regul Pap 63(8):1255–1264

    Article  MathSciNet  Google Scholar 

  36. García-Redondo F, López-Vallejo M, Ituero P (2014) Building memristor applications: From device model to circuit design. IEEE Trans Nanotechnol 13(6):1154–1162

    Article  Google Scholar 

  37. Garda B, Ogorzałek M, Kasiliski K, Galias Z (2017) Studies of dynamics of memristor-based memory cells. In: 2017 IEEE 8th Latin American symposium on circuits & systems (LASCAS). IEEE, pp 1–4

    Google Scholar 

  38. Ghenzi N, Sánchez M, Gomez-Marlasca F, Levy P, Rozenberg M (2010) Hysteresis switching loops in ag-manganite memristive interfaces. J Appl Phys 107(9):093719

    Article  Google Scholar 

  39. Ghoneim MT, Zidan MA, Alnassar MY, Hanna AN, Kosel J, Salama KN, Hussain MM (2015) Thin pzt-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv Electron Mater 1(6):1500045

    Article  Google Scholar 

  40. Guan X, Yu S, Wong HP et al (2012) A spice compact model of metal oxide resistive switching memory with variations. IEEE electron device letters 33(10):1405

    Article  Google Scholar 

  41. Hatem FO, Ho PW, Kumar TN, Almurib HA (2015) Modeling of bipolar resistive switching of a nonlinear mism memristor. Semicond Sci Technol 30(11):115009

    Article  Google Scholar 

  42. He C, Li J, Wu X, Chen P, Zhao J, Yin K, Cheng M, Yang W, Xie G, Wang D et al (2013) Tunable electroluminescence in planar graphene/sio2 memristors. Adv Mater 25(39):5593–5598

    Article  Google Scholar 

  43. He W, Sun H, Zhou Y, Lu K, Xue K, Miao X (2017) Customized binary and multi-level hfo 2- x-based memristors tuned by oxidation conditions. Sci Rep 7(1):10070

    Article  Google Scholar 

  44. Hickmott T (1962) Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 33(9):2669–2682

    Article  Google Scholar 

  45. Hossein-Babaei F, Alaei-Sheini N (2016) Electronic conduction in ti/poly-tio 2/ti structures. Sci Rep 6:29624

    Article  Google Scholar 

  46. Hou P, Wang J, Zhong X, Wu Y (2016) A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv 6(59):54113–54118

    Article  Google Scholar 

  47. Hsieh CC, Roy A, Chang YF, Shahrjerdi D, Banerjee SK (2016) A sub-1-volt analog metal oxide memristive-based synaptic device with large conductance change for energy-efficient spike-based computing systems. Appl Phys Lett 109(22):223501

    Article  Google Scholar 

  48. Hu M, Li H, Chen Y, Wang X, Pino RE (2011) Geometry variations analysis of tio 2 thin-film and spintronic memristors. In: 2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, pp 25–30 (2011)

    Google Scholar 

  49. Hu S, Wu S, Jia W, Yu Q, Deng L, Fu YQ, Liu Y, Chen TP (2014) Review of nanostructured resistive switching memristor and its applications. Nanosci Nanotechnol Lett 6(9):729–757

    Article  Google Scholar 

  50. Hu Z, Li Q, Li M, Wang Q, Zhu Y, Liu X, Zhao X, Liu Y, Dong S (2013) Ferroelectric memristor based on pt/bifeo3/nb-doped srtio3 heterostructure. Applied Physics Letters 102(10):102901

    Article  Google Scholar 

  51. Huang YH, Hsieh TE (2015) Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory. Int J Thermal Sci 87:207–214

    Article  Google Scholar 

  52. Ielmini D, Lavizzari S, Sharma D, Lacaita AL (2007) Physical interpretation, modeling and impact on phase change memory (pcm) reliability of resistance drift due to chalcogenide structural relaxation. In: IEEE international electron devices meeting, IEDM 2007. IEEE, pp 939–942 (2007)

    Google Scholar 

  53. James AP (2018) Memristor and memristive neural networks

    Google Scholar 

  54. Jeon Y, Foltin M (2018) Memristor memory with volatile and non-volatile states. US Patent App. 10/056,140

    Google Scholar 

  55. Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(4):661

    Article  MATH  Google Scholar 

  56. Johnson S, Sundararajan A, Hunley D, Strachan D (2010) Memristive switching of single-component metallic nanowires. Nanotechnology 21(12):125204

    Article  Google Scholar 

  57. Kang E, Neoh K, Tan K (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23(2):277–324

    Article  Google Scholar 

  58. Kavehei, O., Cho, K., Lee, S., Kim, S.J., Al-Sarawi, S., Abbott, D., Eshraghian, K.: Fabrication and modeling of ag/tio 2/ito memristor. In: Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on, pp. 1–4. IEEE (2011)

    Google Scholar 

  59. Keshmiri V (2014) A study of the memristor models and applications

    Google Scholar 

  60. Kikuchi M, Saito M, Okushi H, Matsuda A (1971) Polarized (letter 8) memory in cdse point contact diodes. Solid State Commun 9(10):705–707

    Article  Google Scholar 

  61. Kim D, Lu H, Ryu S, Bark CW, Eom CB, Tsymbal E, Gruverman A (2012) Ferroelectric tunnel memristor. Nano Lett 12(11):5697–5702

    Article  Google Scholar 

  62. Kim H, Sah MP, Yang C, Cho S, Chua LO (2012) Memristor emulator for memristor circuit applications. IEEE Trans Circuits Syst I: Regul Pap 59(10):2422–2431

    Article  MathSciNet  Google Scholar 

  63. Kim S, Chang YF, Park BG (2017) Understanding rectifying and nonlinear bipolar resistive switching characteristics in ni/sinx/p-si memory devices. RSC Adv 7(29):17882–17888

    Article  Google Scholar 

  64. Kim S, Jung S, Kim MH, Chen YC, Chang YF, Ryoo KC, Cho S, Lee JH, Park BG (2018) Scaling effect on silicon nitride memristor with highly doped si substrate. Small 14(19):1704062

    Article  Google Scholar 

  65. Kim S, Kim H, Hwang S, Kim MH, Chang YF, Park BG (2017) Analog synaptic behavior of a silicon nitride memristor. ACS Appl Mater Interfaces 9(46):40420–40427

    Article  Google Scholar 

  66. Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. https://doi.org/10.1109/TETCI.2018.2838124

    Article  Google Scholar 

  67. Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv:1807.00962

  68. Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul Pap

    Google Scholar 

  69. Kumar S, Davila N, Wang Z, Huang X, Strachan JP, Vine D, Kilcoyne AD, Nishi Y, Williams RS (2017) Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. Nanoscale 9(5):1793–1798

    Article  Google Scholar 

  70. Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Magic-memristor-aided logic. IEEE Trans Circuits Syst II: Express Briefs 61(11):895–899

    Article  Google Scholar 

  71. Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2013) Team: threshold adaptive memristor model. IEEE Trans Circuits Syst I: Regul Pap 60(1):211–221. https://doi.org/10.1109/TCSI.2012.2215714

    Article  MathSciNet  Google Scholar 

  72. Kvatinsky S, Ramadan M, Friedman EG, Kolodny A (2015) Vteam: a general model for voltage-controlled memristors. IEEE Trans Circuits Syst II: Express Briefs 62(8):786–790

    Article  Google Scholar 

  73. Laiho M, Hasler JO, Zhou J, Du C, Lu W, Lehtonen E, Poikonen JH (2015) Fpaa/memristor hybrid computing infrastructure. IEEE Trans Circuits Syst I: Regul Pap 62(3):906–915

    Article  MathSciNet  Google Scholar 

  74. Laiho M, Lehtonen E, Russel A, Dudek P (2010) Memristive synapses are becoming reality. Neuromorphic Eng 10–12 (2010)

    Google Scholar 

  75. Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE et al (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1(1):52

    Article  Google Scholar 

  76. Li Y, Zhong Y, Zhang J, Xu X, Wang Q, Xu L, Sun H, Miao X (2013) Intrinsic memristance mechanism of crystalline stoichiometric ge2sb2te5. Appl Phys Lett 103(4):043501

    Article  Google Scholar 

  77. Lian X, Gao F, Wan X, Yao J, Gong X, Guo Y, Tong Y (2018) Performance variability, switching mechanism, and physical model for oxide based memristor and rram device. In: 2018 IEEE international symposium on the physical and failure analysis of integrated circuits (IPFA). IEEE, pp 1–4

    Google Scholar 

  78. Liu SdQ, Wu N, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76(19), 2749–2751 (2000)

    Google Scholar 

  79. Lupo N, Pérez E, Wenger C, Maloberti F, Bonizzoni E (2018) Analysis of parasitic effects in filamentary-switching memristive memories using an approximated verilog-a memristor model. IEEE Trans Circuits Syst: Regul Pap I

    Google Scholar 

  80. Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits. IEEE transactions on neural networks and learning systems 28(8):1734–1746

    Article  MathSciNet  Google Scholar 

  81. Martinsen ØG, Grimnes S, Lütken C, Johnsen G (2010) Memristance in human skin. J Phys Conf Ser 224, 012071. IOP Publishing

    Google Scholar 

  82. Maslova N, Khrapovitskaya Y, Sokolov I, Grishchenko Y, Mamichev D, Zanaveskin M (2015) Features of titanium oxide memristor fabrication by pulsed laser deposition. Physica Status Solidi (c) 12(1–2), 242–245 (2015)

    Google Scholar 

  83. Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T (2018) A data-driven verilog-a reram model. IEEE Trans Comput-Aided Des Integr Circuits Syst

    Google Scholar 

  84. Mladenov, V., Kirilov, S.: A memristor model with a modified window function and activation thresholds. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5 (2018)

    Google Scholar 

  85. Model WAM The generalized metastable switch memristor model

    Google Scholar 

  86. Molter TW, Nugent MA (2016) The generalized metastable switch memristor model. In: CNNA 2016; Proceedings of 15th international workshop on cellular nanoscale networks and their applications. VDE, pp 1–2 (2016)

    Google Scholar 

  87. Nafea SF, Dessouki AA, El-Rabaie S, Elnaghi BE, Ismail Y, Mostafa H (2018) An accurate model of domain-wall-based spintronic memristor. Integration

    Google Scholar 

  88. Naous R (2017) Von-neumann and beyond: Memristor architectures. Ph.D. thesis

    Google Scholar 

  89. Naous R, Al-Shedivat M, Salama KN (2016) Stochasticity modeling in memristors. IEEE Trans Nanotechnol 15(1):15–28

    Article  Google Scholar 

  90. Nielsen P, Bashara N (1964) The reversible voltage-induced initial resistance in the negative resistance sandwich structure. IEEE Trans Electron Dev 11(5):243–244

    Article  Google Scholar 

  91. Nugent MA, Molter TW (2014) Ahah computing-from metastable switches to attractors to machine learning. PloS one 9(2):e85175

    Article  Google Scholar 

  92. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Physical Review Letters 21(20):1450

    Article  Google Scholar 

  93. Park WI, Yoon JM, Park M, Lee J, Kim SK, Jeong JW, Kim K, Jeong HY, Jeon S, No KS et al (2012) Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett 12(3):1235–1240

    Article  Google Scholar 

  94. Pershin Y, Shevchenko S (2017) Computing with volatile memristors: an application of non-pinched hysteresis. Nanotechnology 28(7):075204

    Article  Google Scholar 

  95. Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics 106(7):074508

    Article  Google Scholar 

  96. Prodromakis T, Peh BP, Papavassiliou C, Toumazou C (2011) A versatile memristor model with nonlinear dopant kinetics. IEEE Trans Electron Dev 58(9):3099–3105

    Article  Google Scholar 

  97. Radoi A, Dragoman M, Dragoman D (2011) Memristor device based on carbon nanotubes decorated with gold nanoislands. Appl Phys Lett 99(9):093102

    Article  Google Scholar 

  98. Raeis-Hosseini N, Lim S, Hwang H, Rho J (2018) Reliable ge2sb2te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Adv Electron Mater 4(11):1800360

    Article  Google Scholar 

  99. Raymenants E, Vaysset A, Wan D, Manfrini M, Zografos O, Bultynck O, Doevenspeck J, Heyns M, Radu IP, Devolder T (2018) Chain of magnetic tunnel junctions as a spintronic memristor. Journal of Applied Physics 124(15):152116

    Article  Google Scholar 

  100. Rubi D, Kalstein A, Román W, Ghenzi N, Quinteros C, Mangano E, Granell P, Golmar F, Marlasca F, Suarez S et al (2015) Manganite based memristors: Influence of the electroforming polarity on the electrical behavior and radiation hardness. Thin Solid Films 583:76–80

    Article  Google Scholar 

  101. Salinga M, Kersting B, Ronneberger I, Jonnalagadda VP, Vu XT, Le Gallo M, Giannopoulos I, Cojocaru-Mirédin O, Mazzarello R, Sebastian A (2018) Monatomic phase change memory. Nat Mater 1

    Google Scholar 

  102. Samardzić N, Mionić M, Dakić B, Hofmann H, Dautović S, Stojanović G (2015) Analysis of quantized electrical characteristics of microscale tio 2 ink-jet printed memristor. IEEE Trans Electron Dev 62(6):1898–1904

    Article  Google Scholar 

  103. Sánchez-López C, Carro-Pérez I, Carbajal-Gómez VH, Carrasco-Aguilar MA, Morales-López FE (2018) Memristor emulator circuit design and applications. In: Memristor and memristive neural networks. InTech

    Google Scholar 

  104. Sbiaa R, Meng H, Piramanayagam S (2011) Materials with perpendicular magnetic anisotropy for magnetic random access memory. Physica Status Solidi (RRL)–Rapid Res Lett 5(12), 413–419 (2011)

    Google Scholar 

  105. Schenk T, Mueller S, Schroeder U, Materlik R, Kersch A, Popovici M, Adelmann C, Van Elshocht S, Mikolajick T (2013) Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories. In: 2013 proceedings of the european solid-state device research conference (ESSDERC). IEEE, pp 260–263 (2013)

    Google Scholar 

  106. Secco J, Corinto F, Sebastian A (2018) Flux-charge memristor model for phase change memory. IEEE Trans Circuits Syst II: Express Briefs 65(1):111–114

    Article  Google Scholar 

  107. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N, Stephenson G et al (2006) Ferroelectric thin films: Review of materials, properties, and applications. Journal of Applied Physics 100(5):051606

    Article  Google Scholar 

  108. Shahsavari M, Falez P, Boulet P (2016) Combining a volatile and nonvolatile memristor in artificial synapse to improve learning in spiking neural networks. In: 2016 IEEE/ACM international symposium on nanoscale architectures (NANOARCH). IEEE, pp 67–72 (2016)

    Google Scholar 

  109. Singh J, Raj B (2018) Comparative analysis of memristor models and memories design

    Google Scholar 

  110. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80

    Article  Google Scholar 

  111. Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl Phys A 94(3):515–519

    Article  Google Scholar 

  112. Sumi T, Moriwaki N, Nakane G, Nakakuma T, Judai Y, Uemoto Y, Nagano Y, Hayashi S, Azuma M, Fujii E et al (1994) A 256 kb nonvolatile ferroelectric memory at 3 v and 100 ns. In: Solid-state circuits conference. 1994 IEEE international digest of technical papers. 41st ISSCC. IEEE, pp 268–269

    Google Scholar 

  113. Wang X, Chen Y (2010) Spintronic memristor devices and application. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, pp 667–672

    Google Scholar 

  114. Wang X, Chen Y, Wang A, Xi H, Zhu W, Li H, Liu H (2011) Magnetic tunnel junction and memristor apparatus. US Patent 7,898,844

    Google Scholar 

  115. Wang X, Chen Y, Xi H, Li H, Dimitrov D (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Dev Lett 30(3):294–297

    Article  Google Scholar 

  116. Wang X, Xu B, Chen L (2017) Efficient memristor model implementation for simulation and application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36(7):1226–1230

    Article  Google Scholar 

  117. Williams RS (2008) How we found the missing memristor. IEEE Spectr 45(12) (2008)

    Google Scholar 

  118. Yakopcic C, Taha TM, Subramanyam G, Pino RE (2013) Generalized memristive device spice model and its application in circuit design. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(8):1201–1214

    Article  Google Scholar 

  119. Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. IEEE electron device letters 32(10):1436–1438

    Article  Google Scholar 

  120. Yalon E, Gavrilov A, Cohen S, Mistele D, Meyler B, Salzman J, Ritter D (2012) Resistive switching in \(\backslash \)hbox \(\{\)HfO\(\}\) \_ \(\{\)2\(\}\) probed by a metal-insulator-semiconductor bipolar transistor. IEEE Electron Dev Lett 33(1):11–13

    Article  Google Scholar 

  121. Yang JJ, Pickett MD, Li X, Ohlberg DA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology 3(7):429

    Article  Google Scholar 

  122. Yesil A, Gül F, Babacan Y (2018) Emulator circuits and resistive switching parameters of memristor. In: Memristor and memristive neural networks. InTech

    Google Scholar 

  123. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal fe/mgo/fe magnetic tunnel junctions. Nature materials 3(12):868

    Article  Google Scholar 

  124. Zhao Y, Fang C, Zhang X, Xu X, Gong T, Luo Q, Chen C, Liu Q, Lv H, Li Q et al (2018) A compact model for drift and diffusion memristor applied in neuron circuits design. IEEE Trans Electron Dev 99:1–7

    Google Scholar 

  125. Zhou F, Chang YF, Fowler B, Byun K.C Lee J (2015) Stabilization of multiple resistance levels by current-sweep in siox-based resistive switching memory 106, 063508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Pappachen James .

Editor information

Editors and Affiliations

Highlights

Highlights

  • Memristor is a low power device with a small on-chip area and variable resistance.

  • Hysteresis, POP and DRM are methods to characterize the behavior of memristor.

  • There are several types of memristor models. Some of them are memristor models with window functions, models with fitting parameters, models for particular devices and models suitable for large scale simulations.

  • Different materials exhibit the memristive behavior. Each material or combination of materials possesses unique characteristics suitable for certain applications and compatible with particular devices.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krestinskaya, O., Irmanova, A., James, A.P. (2020). Memristors: Properties, Models, Materials. In: James, A. (eds) Deep Learning Classifiers with Memristive Networks. Modeling and Optimization in Science and Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14524-8_2

Download citation

Publish with us

Policies and ethics