Skip to main content
Log in

Simplification and modification of multiple controlled Toffoli circuits for testability

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Testability dramatically enhances the operating cost in reversible logic circuits as it increases the cost metrics such as gate count, quantum cost, number of wires and garbage output. This increase also affects the utilization of resources, which further enhances overall cost of testing. This paper presents a new design for testability methodology for reversible circuits by exploring the properties of multiple controlled Toffoli and Fredkin gates, to produce online testable circuits at lower cost metrics. The method includes simplification and modification of Toffoli circuits to form parity-preserving Toffoli–Fredkin cascades. The testability in these cascades can be achieved by comparing the parity of inputs and outputs using controlled-NOT gates on an additional wire. Single-point failures in reversible logic circuits are targeted by means of detecting bit faults. In contrast to the existing work, the present model is robust, low cost and has lesser design complexity. Experiments are conducted on a set of benchmark circuits to prove the efficacy of the present work. The results show an average reduction by 15.9 % in gate cost and 11.0 % in total operating cost when compared to the most recent existing work formulated on the same platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: 14th Asian Test Symposium (ATS05), pp. 422–427 (2005)

  2. Chuang, I.L., et al.: Experimental realization of Shors quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

  3. Gaur, H.M., Singh, A.K., Ghanekar, U.: A new DFT methodology for k-CNOT reversible circuits and its implementation using quantum-dot cellular automata. Int. J. Light Electron Opt. 127(22), 10593–10601 (2016)

    Article  Google Scholar 

  4. Takeuchi, N., Yamanashi, Y., Yoshikawa, N.: Reversible logic gate using adiabatic superconducting devices. Nature 4, (2014) Article no. 6354

  5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(66), 525–532 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shors quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

  7. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Gaur, H.M., Singh, A.K., Ghanekar, U.: A review on online testability for reversible logic. Procedia Comput. Sci. 70, 384–391 (2015)

    Article  Google Scholar 

  9. Vasudevan, D.P., Lala, P.K., Jia, D., Parkerson, J.P.: Reversible logic design with online testability. IEEE Trans. Instrum. Meas. 55(2), 406–414 (2006)

    Article  Google Scholar 

  10. Thapliyal, H., Vinod, A.P.: Designing efficient online testable reversible adders with new reversible gate. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1085–1088

  11. Thapliyal, H., Ranganathan, N.: Reversible logic based concurrent error detection methodology for emerging nanocircuit. In: 10th IEEE International Conference on Nano Technology, pp. 217–222 (2004)

  12. Farazmand, N., Zamani, M., Tahoori, M.B.: Online fault testing of reversible logic using dual rail coding. In: 16th IEEE International Symposium on On-Line Testing (IOLTS), pp. 204–205 (2010)

  13. Mahammad, S.K.N., Veezhinathan, K.: Constructing online testable circuits using reversible logic. IEEE Trans Instrum. Meas. 59(1), 101–109 (2010)

    Article  Google Scholar 

  14. Gaur, H.M., Singh, A.K.: Design of reversible logic circuits with high testability. IET Electron. Lett. 52(13), 1102–1104 (2016)

    Article  Google Scholar 

  15. Nayeem, N.M., Rice, J.E.: Online testable approaches in reversible logic. J. Electron Test. 29(6), 763–778 (2013)

    Article  Google Scholar 

  16. Sen, B., Das, J., Sikdar, B.K.: A DFT methodology targeting online testing of reversible circuit. In: IEEE International Conference of Devices, Circuits and Systems, pp. 689–693 (2012)

  17. Mohammadi, M., Eshghi, M.: On figures of merit in reversible logic designs. J. Quant. Info Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maslov, D., Dueck, G., Scott, N.: Reversible Logic Synthesis Benchmark, http://www.cs.uvic.ca/~dmaslov (2017)

  19. An Online Resource for Reversible Functions and Reversible Circuits. http://www.informatik.uni-bremen.de/revkit/

  20. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings of DAC, pp. 318–323 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mohan Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, H.M., Singh, A.K. & Ghanekar, U. Simplification and modification of multiple controlled Toffoli circuits for testability. J Comput Electron 18, 356–363 (2019). https://doi.org/10.1007/s10825-019-01303-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01303-9

Keywords

Navigation