Skip to main content
Log in

Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Tunneling field-effect transistor (TFET) suffers from ultra-sharp doping concentration gradients in both the source/channel junction and drain/channel junction. Recently, the junctionless (JL) TFET device has been proposed to avoid the issue of ultra-sharp doping concentration gradients. Employing III–V semiconductor as a drain/channel material and a group IV semiconductor as a source material has been proposed to improve the heterojunctionless (HJL) TFET device performance. GaAs:Ge HJL-TFET has proved more efficient than other HJL-TFET structures in providing more ON-state current, less OFF-state current, and less subthreshold slope (SS). For the first time in this paper, GaSb as the source material and GaAs as the drain/channel material have been proposed. This is the so-called GaAs:GaSb HJL-TFET structure. Simulation results show that the GaAs:GaSb HJL-TFET provides improvement in both \(I_{\mathrm{ON}}/I_{\mathrm{OFF}}\) ratio and SS as compared to GaAs:Ge HJL-TFETs. We demonstrate that for a 20 nm channel length, the GaAs:GaSb HJL-TFET average SS is improved by 19% and the point slope by 52%, as compared to those of the GaAs:Ge HJL-TFET. Numerical simulations show that the average SS and \(I_{\mathrm{ON}}/I_{\mathrm{OFF}}\) ratio of GaAs:GaSb HJL-TFET are nearly 9 mV/dec and 3E12, respectively, for a 10 nm channel length. Thus, the GaAs:GaSb HJL-TFET holds promise for future logic transistor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bo, Y., Wang, L., Yu, Y., Asbeck, P.M., Yuan, T.: Scaling of nanowire transistors. IEEE Trans. Electron Devices 55, 2846–2858 (2008)

    Article  Google Scholar 

  2. Park, P.S., Rajan, S.: Simulation of short-channel effects in N- and Ga-Polar AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 58, 704–708 (2011)

    Article  Google Scholar 

  3. Joshi, G., Choudhary, A.: Analysis of short channel effects in nanoscale MOSFETs. Int. J. Nanosci. 10, 275–278 (2011)

    Article  Google Scholar 

  4. Vadizadeh, M.: Improving gate delay and ION/IOFF in nanoscale heterostructure field effect diode (H-FED) by using heavy doped layers in the channel. Appl. Phys. A 122, 1–9 (2016)

    Article  Google Scholar 

  5. Loan, S.A., Qureshi, S., Iyer, S.S.K.: A novel partial-ground-plane- based MOSFET on selective buried oxide: 2-D simulation study. IEEE Trans. Electron Device Lett. 57, 671–680 (2010)

    Article  Google Scholar 

  6. Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron Device Lett. 59, 1813–1828 (2012)

    Article  Google Scholar 

  7. Yan, R., Duane, R., Razavi, P., Afzalian, A., Ferain, I., Lee, C.W., Akhavan, N.D., Nguyen, B.Y., Bourdelle, K.K., Colinge, J.P.: LDD and back-gate engineering for fully depleted planar SOI transistors with thin buried oxide. IEEE Trans. Electron Devices 57, 1319–1326 (2010)

    Article  Google Scholar 

  8. Vadizadeh, M., Fathipour, M., Darvish, G.H.: Silicon on raised insulator field effect diode (SORI-FED) for alleviating scaling problem in FED. Int. J. Mod. Phys. B 28, 450038 (2014)

    Article  Google Scholar 

  9. Crupi, F., Albano, D., Alioto, M., Franco, J., Selmi, L., Mitard, J., Groeseneken, G.: Impact of high-mobility materials on the performance of near- and sub-threshold CMOS logic circuits. IEEE Trans. Electron Devices 60, 972–977 (2013)

    Article  Google Scholar 

  10. Vadizadeh, M., Fathipour, M.: Using low-k oxide for reduction of leakage current in Double Gate Tunnel FET. In: ULIS2009: 10th International Conference on Ultimate Integration of Silicon, Aachen, March, pp. 301–304 (2009)

  11. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’neill, B., Blake, A., White, M., Kelleher, A.M.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  Google Scholar 

  12. Rudenko, T., Nazarov, A., Yu, R., Barraud, S., Cherkaoui, K., Razavi, P., Fagas, G.: Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectron. Eng. 109, 326–329 (2013)

    Article  Google Scholar 

  13. Akhavan, N.D., Ferain, I., Razavi, P., Yu, R., Colinge, J.-P.: Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98, 103510–1 (2011)

    Article  Google Scholar 

  14. Lee, C.-W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.-P.: Performance estimation of junctionless multigate transistors. Solid State Electron. 54, 97–103 (2010)

    Article  Google Scholar 

  15. Singh, P., Singh, N., Miao, J., Park, W.-T., Kwong, D.-L.: Gate-all-around junctionless nanowire MOSFET with improved low-frequency noise behavior. IEEE Electron Device Lett. 32, 1752–1754 (2011)

    Article  Google Scholar 

  16. Ghosh, Bahniman, Mondal, Partha, Akram, M.W., Bal, Punyasloka, Akshay, Kumar Salimath: Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime. J. Semicond. 35, 064001 (2014)

    Article  Google Scholar 

  17. Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-orabi, N., Kuhn, K.: Comparison of junctionless and conventional trigate transistors with \(L_g\) down to 26 nm. IEEE Electron Device Lett. 32, 1170–1172 (2011)

    Article  Google Scholar 

  18. Dehdashti Akhavan, N., Ferain, I., Razavi, P., Yu, R., Colinge, J.P.: Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98, 103510 (2011)

    Article  Google Scholar 

  19. Akhavan, N.D., Ferain, I., Yu, R., Razavi, P., Colinge, J.P.: Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs. J. Comput. Electron. 11, 249–265 (2012)

    Article  Google Scholar 

  20. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733 (2007)

    Article  Google Scholar 

  21. Nirschl, T., Fischer, J., Fulde, M., Bargagli-Stoffi, A., Sterkel, M., Sedlmeir, J., Weber, C., Heinrich, R., Schaper, U., Einfeld, J., Neubert, R.: Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron. 50, 44–51 (2006)

    Article  Google Scholar 

  22. Kumar, S.B., Seol, G., Guo, J.: Modeling of a vertical tunneling graphene heterojunction field-effect transistor. J. Appl. Phys. Lett. 101, 033503 (2012)

    Article  Google Scholar 

  23. Ghoreishi, S.S., Saghafi, K., Yousefi, R., Moravvej-farshi, M.K.: A novel tunneling graphene nano ribbon field effect transistor with dual material gate: numerical studies. Superlattices Microstruct. 97, 277–286 (2016)

    Article  Google Scholar 

  24. Kazazis, D., Jannaty, P., Zaslavsky, A., Le Royer, C., Tabone, C., Clavelier, L., Cristoloveanu, S.: Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator. Appl. Phys. Lett. 94, 263508 (2009)

    Article  Google Scholar 

  25. Toh, E.H., Wang, G.H., Lo, G.Q., Chan, L., Samudra, G., Yeo, Y.C.: Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 90, 023505 (2007)

    Article  Google Scholar 

  26. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron. Dev. Lett. 34, 584–586 (2013)

    Article  Google Scholar 

  27. Ghosh, B., Bal, P., Mondal, P.: A junctionless tunnel field effect transistor with low subthreshold slope. J. Comput. Electron. 12, 428–436 (2013)

    Article  Google Scholar 

  28. Asthana, P.K., Ghosh, B., Goswami, Y., Tripathi, B.M.: High-speed and low-power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61, 479–486 (2014)

    Article  Google Scholar 

  29. Palestri, P., De Michielis Michielis, L., Iellina, M. Selmi: Challenges in the introduction of band to band tunneling in semiclassical models for tunnel-FETs (2013). http://www.steeper-project.org/resources/Dissemination/Workshops/Sispad2010_Workshop/talk8_Palestri.pdf

  30. ATLAS User’s Manual (2013). http://www.silvaco.com

  31. Schenk, A.: A model for the field and temperature dependence of SRH lifetimes in silicon. Solid-State Electron. 35, 1585–1596 (1992)

    Article  Google Scholar 

  32. Hansch, W., Vogelsang, T., Kirchner, R., Orlowski, M.: Carrier transport near the Si/SiO\(_2\) interface of a MOSFET. Solid-State Electron. 32, 839–849 (1989)

    Article  Google Scholar 

  33. Slotboom, J.W., de Graaff, H.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. 19, 857–862 (1976)

    Article  Google Scholar 

  34. Chau, Robert, Suman, Datta, Mark, Doczy, Brian, Doyle, Ben, Jin, Jack, Kavalieros, Amlan, Majumdar, Matthew, Metz, Marko, Radosavljevic: Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005)

    Article  Google Scholar 

  35. Kumar, M.P.V., Hu, C.Y., Kao, K.H., Lee, Y.J., Chao, T.S.: Impacts of the shell doping profile on the electrical characteristics of junctionless FETs. IEEE Trans. Electron Devices 62, 3541–3546 (2015)

    Article  Google Scholar 

  36. Tornberg, M., Mårtensson, E.K., Zamani, R.R., Lehmann, S., Dick, K.A., Ghalamestani, S.G.: Demonstration of Sn-seeded GaSb homo-and GaAs-GaSb heterostructural nanowires. Nanotechnology 27, 175602 (2016)

    Article  Google Scholar 

  37. Shi, S., Zhang, Z., Lu, Z., Shu, H., Chen, P., Li, N., Zou, J., Lu, W.: Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures. Nanoscale Res. Lett. 10, 108 (2015)

    Article  Google Scholar 

  38. Parisini, A., Baldini, M., Gombia, E., Frigeri, C., Jakomin, R., Tarricone, L.: Electrical and interfacial properties of GaAs/GaSb metal-organic vapour phase epitaxy heterostructures. J. Appl. Phys. 113, 043719 (2013)

    Article  Google Scholar 

  39. Ye, P.D., Wilk, G.D., Kwo, J., Yang, B.A.Y.B., Gossmann, H.J., Frei, M.A.F.M., Chu, S.N.G., Mannaerts, J.P., Sergent, M.A.S.M., Hong, M.A.H.M., Ng, K.K.: GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition. IEEE Electron Device Lett. 24, 209–211 (2003)

    Article  Google Scholar 

  40. Kumar, M.Jagadesh, Janardhanan, Sindhu: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60, 3285–3290 (2013)

    Article  Google Scholar 

  41. Ranade, P., Takeuchi, H., King, T.-J., Hu, C.: Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid-State Lett. 4, G85–G87 (2001)

    Article  Google Scholar 

  42. Bessire, Cedric D., Björk, Mikael T., Schmid, Heinz, Schenk, Andreas, Reuter, Kathleen B., Riel, Heike: Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes’. Nano Lett. 11, 4195–4199 (2011)

    Article  Google Scholar 

  43. Khayer, M.Abul, Lake, Roger K.: Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors. J. Appl. Phys. 110, 074508 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Vadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadizadeh, M. Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies. J Comput Electron 17, 745–755 (2018). https://doi.org/10.1007/s10825-018-1136-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1136-6

Keywords

Navigation