Skip to main content
Log in

Emission and absorption of optical phonons in Multigate Silicon Nanowire MOSFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper we study the influence of emission/absorption processes due to optical phonons on the electrical properties of multigate silicon nanowire transistors. We show that low-energy phonons reduce drain current through backscattering of carriers by emission/absorption processes while high-energy phonons redistribute the current energy spectrum along the nanowire channel through phonon emission without significantly reducing the drain current drive. The influence of emission/absorption is investigated in different multigate silicon FET structures with uniform channel, single impurity, random doping atom distribution and oxide tunnel barriers. A three-dimensional quantum mechanical device simulator based on the NEGF formalism in coupled mode-space approach is used to model electron transport in the presence of optical phonon scattering mechanism. Electron-phonon scattering is accounted for by adopting the self-consistent Born approximation and using the deformation potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Svizhenko, A., Anantram, M.P.: Role of scattering in nanotransistors. IEEE Trans. Electron Devices 50(6), 1459–1466 (2003)

    Article  Google Scholar 

  2. Jin, S., Park, Y.J., Min, H.S.: A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions. J. Appl. Phys. 99(12), 123719 (2006)

    Article  Google Scholar 

  3. Venugopal, R., Paulsson, M., Goasguen, S., et al.: A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 93(9), 5613–5625 (2003)

    Article  Google Scholar 

  4. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  5. Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80(15), 155430 (2009)

    Article  Google Scholar 

  6. Akhavan, N.D., Afzalian, A., Lee, C.W., et al.: Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108(3), 034510 (2010)

    Article  Google Scholar 

  7. Akhavan, N.D., Afzalian, A., Ferain, I., et al.: Influence of elastic and inelastic electron–phonon interaction on quantum transport in multigate silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(4), 1029–1037 (2011)

    Article  Google Scholar 

  8. Seonghoon, J., Young June, P., Hong Shick, M.: Influence of electron-phonon interactions on the electronic transport in nanowire transistors. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 35–38 (2006)

    Google Scholar 

  9. Rogdakis, K., Poli, S., Bano, E., et al.: Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20(29), 295202 (2009)

    Article  Google Scholar 

  10. Pourfath, M., Kosina, H., Selberherr, S.: The effect of inelastic phonon scattering on carbon nanotube-based transistor performance—art. no. 012029. In: International Symposium on Advanced Nanodevices and Nanotechnology, vol. 109, p. 12029 (2008)

    Google Scholar 

  11. Koswatta, S.O., Hasan, S., Lundstrom, M.S., et al.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007)

    Article  Google Scholar 

  12. Guo, J.: A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors. J. Appl. Phys. 98(6), 063519 (2005)

    Article  Google Scholar 

  13. Kim, R., Lundstrom, M.S.: Physics of carrier backscattering in one- and two-dimensional nanotransistors. IEEE Trans. Electron Devices 56(1), 132–139 (2009)

    Article  Google Scholar 

  14. Lundstrom, M., Ren, Z.B.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49(1), 133–141 (2002)

    Article  Google Scholar 

  15. Dehdashti, N., Kranti, A., Ferain, I., et al.: Dissipative transport in multigate silicon nanowire transistors. In: 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Bologna, Italy, pp. 97–100 (2010)

    Chapter  Google Scholar 

  16. Dehdashti, N., Kranti, A., Ferain, I., et al.: Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs. In: 14th International Workshop on Computational Electronics (IWCE), Pisa, Italy, pp. 1–4 (2010)

    Google Scholar 

  17. Pourfath, M., Kosina, H.: Formalism application of the non-equilibrium Green’s function for the numerical analysis of carbon nanotube FETs. J. Comput. Theor. Nanosci. 5(6), 1128–1137 (2008)

    Google Scholar 

  18. Lake, R., Klimeck, G., Bowen, R.C., et al.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Article  Google Scholar 

  19. Nikonov, D.E., Pal, H., Bourianoff, G.: Scattering in NEGF: made simple (2009). http://nanohub.org/resources/7772

  20. Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two- and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4) (2006). doi:10.1063/1.2244522

  21. Knezevic, I., Ramayya, E.B., Vasileska, D., et al.: Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6(8), 1725–1753 (2009)

    Article  Google Scholar 

  22. Monsef, F., Dollfus, P., Galdin, S., et al.: First-order intervalley scattering in low-dimensional systems. Phys. Rev. B 65(21), 212304 (2002)

    Article  Google Scholar 

  23. Guo, J., Datta, S., Lundstrom, M., et al.: Towards multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2 (2004). Special issue on multiscale methods for emerging technologies. doi:10.1615/IntJMultCompEng.v2.i2.60

  24. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)

    Article  Google Scholar 

  25. Polizzi, E., Ben Abdallah, N.: Self-consistent three-dimensional models for quantum ballistic transport in open systems. Phys. Rev. B 66(24), 15 (2002)

    Article  Google Scholar 

  26. Trellakis, A., Galick, A.T., Pacelli, A., et al.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880–7884 (1997)

    Article  Google Scholar 

  27. Tan, I.H., Snider, G.L., Chang, L.D., et al.: A self-consistent solution of Schrodinger-Poisson equations using a nonuniform mesh. J. Appl. Phys. 68(8), 4071–4076 (1990)

    Article  Google Scholar 

  28. Shin, M.: Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k.p method. J. Appl. Phys. 106(5), 054505 (2009)

    Article  Google Scholar 

  29. Akhavan, N.D., Ferain, I., Yan, R., et al.: Influence of single-atom impurity scattering on quantum transport in silicon nanowire transistors. In: VII Workshop of the European Network on Silicon on Insulator Technologies (EUROSOI-2011). Conference Proceedings, Granada, Spain, January 17–19, 2011, pp. 79–80 (2011)

    Google Scholar 

  30. Afzalian, A., Akhavan, N.D., Lee, C.W., et al.: A new F(ast)-CMS NEGF algorithm for efficient 3D simulations of switching characteristics enhancement in constricted tunnel barrier silicon nanowire MuGFETs. J. Comput. Electron. 8(3–4), 287–306 (2009)

    Article  Google Scholar 

  31. Akhavan, N.D., Ferain, I., Yu, R., et al.: Influence of discrete dopant on quantum transport in silicon nanowire transistors. Solid-State Electron. (2011). doi:10.1016/j.sse.2011.11.017

    Google Scholar 

  32. Akhavan, N.D., Ferain, I., Razavi, P., et al.: Random dopant variation in junctionless nanowire transistors. In: IEEE International SOI Conference (SOI), Phoenix, AZ (2011)

    Google Scholar 

  33. Lenzi, M., Gnudi, A., Reggiani, S., et al.: Semiclassical transport in silicon nanowire FETs including surface roughness. J. Comput. Electron. 7(3), 355–358 (2008)

    Article  Google Scholar 

  34. Lenzi, M., Palestri, P., Gnani, E., et al.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Devices 55(8), 2086–2096 (2008)

    Article  Google Scholar 

  35. Gilbert, M.J., Akis, R., Ferry, D.K.: Phonon-assisted ballistic to diffusive crossover in silicon nanowire transistors. J. Appl. Phys. 98(9) (2005). doi:10.1063/1.2120890

  36. Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110(9), 093710. doi:10.1063/1.3654143

  37. Gilbert, M.J., Akis, R., Ferry, D.K.: Scattering in quantum simulations of silicon nanowire transistors. J. Phys. Conf. Ser. 35(1), 219 (2006)

    Article  Google Scholar 

  38. Pourfath, M.: Numerical study of quantum transport in carbon nanotube-based transistors. Institute for Microelectronics, Vienna University of Technology, Vienna (2007)

  39. Chauhan, J., Jing, G.: Inelastic phonon scattering in graphene FETs. IEEE Trans. Electron Devices 58(11), 3997–4003. doi:10.1109/TED.2011.2164253

  40. Yoon, Y., Nikonov, D.E., Salahuddin, S.: Role of phonon scattering in graphene nanoribbon transistors: nonequilibrium Green’s function method with real space approach. Appl. Phys. Lett. 98(20), 203503. doi:10.1063/1.3589365

  41. Ouyang, Y., Wang, X., Dai, H., et al.: Carrier scattering in graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 92(24), 243124 (2008)

    Article  Google Scholar 

  42. Koswatta, S.O., Hasan, S., Lundstrom, M.S., et al.: Ballisticity of nanotube field-effect transistors: role of phonon energy and gate bias. Appl. Phys. Lett. 89(2), 023125 (2006)

    Article  Google Scholar 

  43. Huang, M.-J., Weng, C.-C., Chang, T.-M.: An investigation of the phonon properties of silicon nanowires. Int. J. Therm. Sci. 49(7), 1095–1102. doi:10.1016/j.ijthermalsci.2010.02.002

  44. Ramayya, E.B., Vasileska, D., Goodnick, S.M., et al.: Thermoelectric properties of silicon nanowires. In: Nanotechnology, 2008. 8th IEEE Conference on NANO’08, pp. 339–342 (2008)

    Chapter  Google Scholar 

  45. Neophytou, N., Kosina, H.: Confinement-induced carrier mobility increase in nanowires by quantization of warped bands. Solid-State Electron. 70, 81–91. doi:10.1016/j.sse.2011.11.018

  46. Kim, S., Luisier, M., Paul, A., et al.: Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs. IEEE Trans. Electron Devices 58(5), 1371–1380 (2011)

    Article  Google Scholar 

  47. Neophytou, N., Kosina, H.: Atomistic simulations of low-field mobility in Si nanowires: influence of confinement and orientation. Phys. Rev. B 84(8), 085313. doi:10.1103/PhysRevB.84.085313

  48. Pourfath, M., Kosina, H., Selberherr, S.: Numerical study of quantum transport in carbon nanotube transistors. Math. Comput. Simul. 79(4), 1051–1059 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tsuchiya, H., Takagi, S.: Influence of elastic and inelastic phonon scattering on the drive current of quasi-ballistic MOSFETs. IEEE Trans. Electron Devices 55(9), 2397–2402 (2008)

    Article  Google Scholar 

  50. Pourfath, M., Kosina, H., Selberherr, S.: Rigorous modeling of carbon nanotube transistors. In: Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, 2005, vol. 38, pp. 29–32 (2006)

    Google Scholar 

  51. Park, J.Y., Rosenblatt, S., Yaish, Y., et al.: Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517–520 (2004)

    Article  Google Scholar 

  52. Yan, R., Lynch, D., Cayron, T., et al.: Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations. Solid-State Electron. 52(12), 1872–1876 (2008)

    Article  Google Scholar 

  53. Dollfus, P., Bournel, A., Galdin, S., et al.: Effect of discrete impurities on electron transport in ultrashort MOSFET using 3-D MC simulation. IEEE Trans. Electron Devices 51(5), 749–756 (2004)

    Article  Google Scholar 

  54. Bescond, M., Lannoo, M., Raymond, L., et al.: Single donor induced negative differential resistance in silicon n-type nanowire metal-oxide-semiconductor transistors. J. Appl. Phys. 107(9), 093703 (2010)

    Article  Google Scholar 

  55. Akhavan, N.D., Ferain, I., Yu, R., et al.: Influence of discrete dopant on quantum transport in silicon nanowire transistors. Solid-State Electron. (2011). doi:10.1088/1742-6596/220/1/012009

    Google Scholar 

  56. Moon, D.-h., Song, J.-J., Kim, O.: Effect of source/drain doping gradient on threshold voltage variation in double-gate fin field effect transistors as determined by discrete random doping. Jpn. J. Appl. Phys. 49(10), 2010 (2010)

    Article  Google Scholar 

  57. Kranti, A., Alastair Armstrong, G.: Engineering source/drain extension regions in nanoscale double gate (DG) SOI MOSFETs: analytical model and design considerations. Solid-State Electron. 50(3), 437–447 (2006)

    Article  Google Scholar 

  58. Li, Y., Hwang, C.-H.: Discrete-dopant-induced characteristic fluctuations in 16nm multiple-gate silicon-on-insulator devices. J. Appl. Phys. 102(8), 084509 (2007)

    Article  Google Scholar 

  59. Martinez, A., Seoane, N., Brown, A.R., et al.: Variability in Si nanowire MOSFETs due to the combined effect of interface roughness and random dopants: a fully three-dimensional NEGF simulation study. IEEE Trans. Electron Devices 57(7), 1626–1635 (2010)

    Article  Google Scholar 

  60. Seoane, N., Martinez, A., Brown, A.R., et al.: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: a fully 3-D NEGF simulation study. IEEE Trans. Electron Devices 56(7), 1388–1395 (2009)

    Article  Google Scholar 

  61. Martinez, A., Bescond, M., Barker, J.R., et al.: A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54(9), 2213–2222 (2007)

    Article  Google Scholar 

  62. Martinez, A., Seoane, N., Brown, A.R., et al.: 3-D nonequilibrium green’s function simulation of nonperturbative scattering from discrete dopants in the source and drain of a silicon nanowire transistor. IEEE Trans. Nanotechnol. 8(5), 603–610 (2009)

    Article  Google Scholar 

  63. Gilbert, M.J., Ferry, D.K.: Discrete dopant effects in ultrasmall fully depleted ballistic SOI MOSFETs. Superlattices Microstruct. 34(3–6), 277–282 (2003)

    Article  Google Scholar 

  64. Colinge, J.P., Lee, C.W., Afzalian, A., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  65. Lee, C.-W., Nazarov, A.N., Ferain, I., et al.: Low subthreshold slope in junctionless multigate transistors. Appl. Phys. Lett. 96(10), 102106 (2010)

    Article  Google Scholar 

  66. Lee, C.-W., Afzalian, A., Akhavan, N.D., et al.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  67. Lee, C.W., Ferain, I., Afzalian, A., et al.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)

    Article  Google Scholar 

  68. Akhavan, N.D., Ferain, I., Razavi, P., et al.: Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98(10) (2011)

  69. Martinez, A., Brown, A.R., Roy, S., et al.: NEGF simulations of a junctionless Si gate-all-around nanowire transistor with discrete dopants. In: 12th International Conference on Ultimate Integration on Silicon (ULIS), Cork, Ireland, pp. 1–4 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation Ireland grants 05/IN/I888 and 10/IN.1/I2992, the European project SQWIRE under Grant Agreement No. 257111 and the European Community (EC) Seventh Framework Program through the Network of Excellence Nano-TEC under Contract 257964. This work has also been enabled by the Programme for Research in Third-Level Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Dehdashti Akhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehdashti Akhavan, N., Ferain, I., Yu, R. et al. Emission and absorption of optical phonons in Multigate Silicon Nanowire MOSFETs. J Comput Electron 11, 249–265 (2012). https://doi.org/10.1007/s10825-012-0411-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0411-1

Keywords

Navigation