Skip to main content
Log in

A pseudo 2-D surface potential model of a dual material double gate junctionless field effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have developed a pseudo two-dimensional (2-D) analytical model for the surface potential of a dual-material double-gate junctionless field-effect transistor. We have incorporated the effects of depletion into the source and drain regions to model the surface potential for all three operating modes: (a) full depletion, (b) partial depletion, and (c) near flatband. The effects of the device parameters such as oxide thickness, silicon thickness, and impurity concentration on the surface potential is demonstrated through the model. The model is further extended to derive an expression for the threshold voltage which predicts the expected change with respect to variation in the device parameters. The accuracy of the proposed model is verified against 2-D numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, Z., Xiao, Y., Tang, M., Xiong, Y., Huang, J., Li, J., Gu, X., Zhou, Y.: Surface-potential-based drain current model for long-channel junctionless double gate MOSFETs. IEEE Trans. Electron Devices 59(12), 3292–3298 (2012)

    Article  Google Scholar 

  2. Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46, 865–870 (1999)

    Article  Google Scholar 

  3. Kumar, M.J., Chaudhary, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)

    Article  Google Scholar 

  4. Kumar, M.J., Chaudhary, A.: Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 1463–1467 (2004)

    Article  Google Scholar 

  5. Saxena, R.S., Kumar, M.J.: Dual material gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs. IEEE Trans. Electron Devices 56(3), 517–522 (2009)

    Article  Google Scholar 

  6. Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)

    Article  Google Scholar 

  7. Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61(7), 2264–2270 (2014)

    Article  Google Scholar 

  8. Saurabh, S., Kumar, M.J.: Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)

    Article  Google Scholar 

  9. Kumar, M.J., Reddy, G.V.: Evidence for suppressed short-channel effects in deep submicron dual-material gate (DMG) partially depleted SOI MOSFETs - A two-dimensional analytical approach. Microelectron. Engg. 75(4), 367–374 (2004)

    Article  Google Scholar 

  10. Pandey, P., Vishnoi, R., Kumar, M.J.: A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling. J. Comput. Electron. 14(1), 280–287 (2015)

    Article  Google Scholar 

  11. Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high on-current. IEEE Trans. Electron Devices 61(3), 776–784 (2014)

    Article  Google Scholar 

  12. Lou, H., Zhang, L., Zhu, Y., Lin, X., Yang, S., He, J.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2012)

    Article  Google Scholar 

  13. Baruah, R.K., Paily, R.P.: A dual-material gate junctionless transistor with high- \(k\) spacer for enhanced analog performance. IEEE Trans. Electron Devices 61(1), 123–128 (2014)

    Article  Google Scholar 

  14. Ren, C., Yu, H., Kang, J., Wang, X., Ma, H., Yeo, Y., Chan, D., Li, M., Kwong, D.: A dual-metal gate integration process for CMOS with sub- 1-nm EOT HfO2 by using HfN replacement gate. IEEE Electron Device Lett. 25(8), 580–582 (2004)

    Article  MATH  Google Scholar 

  15. Yeo, Y., Lu, Q., Ranade, P., Takeuchi, H., Yang, K., Polishchuk, I., King, T., Hu, C., Song, S., Luan, H., Kwong, D.-L.: Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 22(5), 227–229 (2001)

    Article  Google Scholar 

  16. ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA (2014)

  17. Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Semi-analytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron Devices 60(4), 1342–1348 (2013)

    Article  MATH  Google Scholar 

  18. Duarte, J.P., Choi, S.-J., Choi, Y.-K.: A full-range drain current model for double-gate junctionless transistors. IEEE Trans. Electron Devices 58(12), 4219–4225 (2011)

    Article  Google Scholar 

  19. Young, K.K.: Analysis of conduction in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(3), 504–506 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jagadesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A.K., Koutilya, P.N.V.R. & Jagadesh Kumar, M. A pseudo 2-D surface potential model of a dual material double gate junctionless field effect transistor. J Comput Electron 14, 686–693 (2015). https://doi.org/10.1007/s10825-015-0710-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0710-4

Keywords

Navigation