Skip to main content
Log in

2-D Analytical Model for Electrical Characteristics of Dual Metal Heterogeneous Gate Dielectric Double-Gate TFETs with Localized Interface Charges

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a 2-D analytical model for electrical characteristics such as surface potential, drain current, and threshold voltage of dual metal (DM) heterogeneous gate dielectric (HGD) double-gate (DG) tunnel field-effect transistors (TFETs) with localized interface charges have been investigated. The surface potential model has been used to derive a compact model for the electric field by including the effects of the localized charges near the source/channel junction, mobile charges in channel region and the charges in the depletion regions formed at source/channel and drain/channel junctions. The band-to-band tunneling (BTBT) generation rate has been developed by considering the effect of the electric fields at both the source/channel and drain/channel junctions. The drain current has then been derived for all gate bias (i.e. ambipolar to forward gate bias) by using the tangent line approximation method. Finally, the threshold voltage model has been developed by using the concept of shortest tunneling path of DM-HGD DG-TFET under study. The impact of localized interface charges on the drain current and threshold voltage by varying the device dimensions are also investigated. The validity of our model results are verified by numerical simulation results obtained from 2-D device simulator ATLAS™ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi WY, Park BG, Lee JD, King Liu T-J (2007) Tunneling field- effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Trans Electron Devices 28(8):743–745. https://doi.org/10.1109/LED.2007.901273

    Article  CAS  Google Scholar 

  2. Talukdar J, Rawat G, Mummaneni K (2019) A Novel Extended Source TFET with δp+− SiGe Layer. J Silicon 52. https://doi.org/10.1007/s12633-019-00321-3

  3. Joshi T, Singh Y, Singh B (2020) Extended-source double-gate tunnel FET with improved DC and analog/RF performance. IEEE Trans Electron Devices 67(4):1873–1879. https://doi.org/10.1109/TED.2020.2973353

    Article  CAS  Google Scholar 

  4. Kumar S, Goel E, Singh K, Singh B, Kumar M, Jit S (2016) A compact 2-D analytical model for electrical characteristics of double-gate tunnel-FETs with a SiO2/high-k stacked gate-oxide structure. IEEE Trans Electron Devices 63:3291–3299. https://doi.org/10.1109/TED.2016.2572610

    Article  CAS  Google Scholar 

  5. Joshi T, Singh Y, Singh B (Oct. 2019) Dual-channel trench-gate tunnel FET for improved ON-current and subthreshold swing. Electron Lett 55(21):1152–1155. https://doi.org/10.1049/el.2019.2219

    Article  CAS  Google Scholar 

  6. Joshi T, Singh B, Singh Y (2020) Controlling the ambipolar current in ultrathin SOI tunnel FETs using the back-bias effect. J Comput Electron 19:658–667. https://doi.org/10.1007/s10825-020-01484-8

    Article  CAS  Google Scholar 

  7. Mishra A, Narang R, Saxena M, Gupta M (2016) Impact of interfacial fixed charges on the electrical characteristics of pocket-doped double-gate tunnel FET. IEEE Trans Devices Materials Reliabil 16(2):117–122. https://doi.org/10.1109/TDMR.2016.2533428

    Article  CAS  Google Scholar 

  8. Talukdar J, Rawat G, Singh K, Mummaneni K (2020) Comparative analysis of the effects of trap charges on single- and double-gate extended-source tunnel FET with δp+ SiGe pocket layer. J Electron Mater 49:4333–4342. https://doi.org/10.1007/s11664-020-08151-5

    Article  CAS  Google Scholar 

  9. Vishnoi R, Jagadesh Kumar M (2014) 2-D analytical model for the threshold voltage of a tunneling FET with localized charges. IEEE Trans Electron Devices 61(9):3054–3059. https://doi.org/10.1109/TED.2014.2332039

    Article  Google Scholar 

  10. Bardon MG, Neves HP, Pures R, Van Hoof C (2010) Pseudo-two-dimensional model for double-gate-tunnel FETs considering the junctions depletion regions. IEEE Trans Electron Devices 57(4):827–834. https://doi.org/10.1109/TED.2010.2040661

    Article  CAS  Google Scholar 

  11. Wang P, Zhuang YQ, Li C, Jiang Z, Liu YQ (2016) Drain current model for double-gate tunnel field-effect transistor with hetero-gate-dielectric and source-pocket. Microelectron Reliab 59:30–36. https://doi.org/10.1016/j.microrel.2015.09.014

    Article  CAS  Google Scholar 

  12. Upasana R, Narang MS, Gupta M (2015) Modeling and TCAD assessment for gate material and gate dielectric engineered TFET architectures: circuit-level investigation for digital applications. IEEE Trans Electron Devices 62(10):3348–3356. https://doi.org/10.1109/TED.2015.2462743

    Article  Google Scholar 

  13. Madan J, Gupta RS, Chaujar R (2015) Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor. Jpn J Appl Phys 54:094202–094209. https://doi.org/10.7567/JJAP.54.094202

    Article  CAS  Google Scholar 

  14. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans Electron Devices 57(9):2317–2319. https://doi.org/10.1109/TED.2010.2052167

    Article  Google Scholar 

  15. Mitra K, Goswami R, Bhowmick B (2016) A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. J Superlattices Microstruct 92(3):37–51. https://doi.org/10.1016/j.spmi.2016.01.040

    Article  CAS  Google Scholar 

  16. Saurabh S, Kumar MJ (2011) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices 58(2):404–410. https://doi.org/10.1109/TED.2010.2093142

    Article  CAS  Google Scholar 

  17. Vishnoi R, Kumar MJ (2015) A compact analytical model for the drain current of gate-all-around nanowire tunnel FET accurate from sub-threshold to ON-state. IEEE Trans Nanotech 14(2):358–362. https://doi.org/10.1109/TNANO.2015.2395879

    Article  CAS  Google Scholar 

  18. Kumar S, Goel E, Singh K, Singh B, Baral K, Singh PK, Jit S (2017) 2-D analytical modeling of the electrical characteristics of dual-material DG TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Trans Electron Devices 64:960–968. https://doi.org/10.1109/TED.2017.2656630

    Article  CAS  Google Scholar 

  19. Wu C, Huang R, Huang Q, Wang C, Wang J, Wang Y (2014) An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs. IEEE Trans Electron Devices 61(8):2690–2696. https://doi.org/10.1109/TED.2014.2329372

    Article  Google Scholar 

  20. Jain P, Yadav C, Agarwal A, Chauhan YS (2017) Surface potential based modeling of charge, current, and capacitances in DG TFET including mobile channel charge and ambipolar behaviour. Solid State Electron 134:74–81. https://doi.org/10.1016/j.sse.2017.05.012

    Article  CAS  Google Scholar 

  21. Zhou X (2000) Exploring the novel characteristics of hetero-material gate field-effect transistors with gate-material engineering. IEEE Trans Electron Device 47(1):113–120. https://doi.org/10.1109/16.817576

    Article  CAS  Google Scholar 

  22. G. Lee, J.-S. Jang, and W. Y. Choi, “Dual-dielectric-constant spacer hetero-gate dielectric tunneling field-effect transistors,” Semicond Sci Technol, vol. 28, no. 5, p. 052001, 2013, doi:https://doi.org/10.1088/0268-1242/28/5/052001

  23. Guan Y, Li Z, Zhang W, Zhang Y (2017) An accurate analytical current model of double-gate heterojunction TFET. IEEE Trans Electron Devices 64(3):938–944. https://doi.org/10.1109/TED.2017.2654248

    Article  CAS  Google Scholar 

  24. Chander S, Baishya S (July 2015) A two-dimensional gate threshold voltage model for a heterojunction SOI-tunnel FET with oxide/source overlap. IEEE Electron Device Let 36(7):714–716. https://doi.org/10.1109/LED.2015.2432061

    Article  CAS  Google Scholar 

  25. Boucart K, Ionescu AM (2008) A new definition of threshold voltage in tunnel FETs. Solid State Electron 52:1318–1323. https://doi.org/10.1016/j.sse.2008.04.003

    Article  CAS  Google Scholar 

  26. Vandenberghe WG, Sorée B, Magnus W, Groeseneken G, Fischetti MV (2011) Impact of field-induced quantum confinement in tunneling field-effect devices. Appl Phys Lett 98:143503–143503. https://doi.org/10.1063/1.3573812

    Article  CAS  Google Scholar 

  27. ATLAS (2013) 2-D Device Simulator. SILVACO Int, Santa Clara, CA, USA

    Google Scholar 

  28. Lin S, Kuo J (Dec. 2003) Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans Electron Devices 50(12):2559–2564. https://doi.org/10.1109/TED.2003.816910

    Article  CAS  Google Scholar 

  29. Shen C, Ong S, Heng C, Samudra G, Yeo Y (2008) A Variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Devices Lett 29(11):1252–1255. https://doi.org/10.1109/LED.2008.2005517

    Article  CAS  Google Scholar 

  30. Pan A, Chui C (2012) A quasi-analytical model for double-gate tunneling field-effect transistors. IEEE Electron Devices Lett 33(10):1468–1470. https://doi.org/10.1109/LED.2012.2208933

    Article  CAS  Google Scholar 

  31. Kane EO (Jan. 1960) Zener tunneling in semiconductors. J Phys Chem Solids 12(2):181–188. https://doi.org/10.1016/0022-3697(60)90035-4

    Article  CAS  Google Scholar 

  32. Zhang L, Chan M (Feb. 2014) SPICE modeling of double-gate tunnel-FETs including channel transports. IEEE Trans Electron Devices 61(2):300–307. https://doi.org/10.1109/TED.2013.2295237

    Article  Google Scholar 

  33. Pal A, Dutta AK (2016) Analytical drain current modeling of double-gate tunnel FETs. IEEE Trans Electron Devices 63(8):3213–3221. https://doi.org/10.1109/TED.2016.2581842

    Article  CAS  Google Scholar 

  34. Choi WY, Lee HK (2016) Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs). Nano Convergence 3(1):1–15. https://doi.org/10.1186/s40580-016-0073-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Jit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, K., Baral, K. et al. 2-D Analytical Model for Electrical Characteristics of Dual Metal Heterogeneous Gate Dielectric Double-Gate TFETs with Localized Interface Charges. Silicon 13, 2519–2527 (2021). https://doi.org/10.1007/s12633-020-00564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00564-5

Keywords

Navigation