Skip to main content
Log in

Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The prediction of acid dissociation constants (pKa) is a prerequisite for predicting many other properties of a small molecule, such as its protein–ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility. The prediction of each of these properties requires knowledge of the relevant protonation states and solution free energy penalties of each state. The SAMPL6 pKa Challenge was the first time that a separate challenge was conducted for evaluating pKa predictions as part of the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) exercises. This challenge was motivated by significant inaccuracies observed in prior physical property prediction challenges, such as the SAMPL5 log D Challenge, caused by protonation state and pKa prediction issues. The goal of the pKa challenge was to assess the performance of contemporary pKa prediction methods for drug-like molecules. The challenge set was composed of 24 small molecules that resembled fragments of kinase inhibitors, a number of which were multiprotic. Eleven research groups contributed blind predictions for a total of 37 pKa distinct prediction methods. In addition to blinded submissions, four widely used pKa prediction methods were included in the analysis as reference methods. Collecting both microscopic and macroscopic pKa predictions allowed in-depth evaluation of pKa prediction performance. This article highlights deficiencies of typical pKa prediction evaluation approaches when the distinction between microscopic and macroscopic pKas is ignored; in particular, we suggest more stringent evaluation criteria for microscopic and macroscopic pKa predictions guided by the available experimental data. Top-performing submissions for macroscopic pKa predictions achieved RMSE of 0.7–1.0 pKa units and included both quantum chemical and empirical approaches, where the total number of extra or missing macroscopic pKas predicted by these submissions were fewer than 8 for 24 molecules. A large number of submissions had RMSE spanning 1–3 pKa units. Molecules with sulfur-containing heterocycles or iodo and bromo groups were less accurately predicted on average considering all methods evaluated. For a subset of molecules, we utilized experimentally-determined microstates based on NMR to evaluate the dominant tautomer predictions for each macroscopic state. Prediction of dominant tautomers was a major source of error for microscopic pKa predictions, especially errors in charged tautomers. The degree of inaccuracy in pKa predictions observed in this challenge is detrimental to the protein-ligand binding affinity predictions due to errors in dominant protonation state predictions and the calculation of free energy corrections for multiple protonation states. Underestimation of ligand pKa by 1 unit can lead to errors in binding free energy errors up to 1.2 kcal/mol. The SAMPL6 pKa Challenge demonstrated the need for improving pKa prediction methods for drug-like molecules, especially for challenging moieties and multiprotic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

SAMPL6 \(\text {p}K_{\text{a}}\) challenge instructions, submissions, experimental data and analysis is available at SAMPL6 GitHub Repository: https://github.com/samplchallenges/SAMPL6. An archive copy of the pKa Challenge directory of SAMPL6 GitHub Repository (SAMPL6-repository-pKadirectory.zip) is also available in the Supplementary Documents bundle (Electronic Supplementary Material 2). Supplementary Documents bundle also includes the following: (1) Table S1 in CSV format (SAMPL6-pKa-chemical-identiers-table.csv), (2) Table S2 in CSV format (macroscopic-pKa-statistics-24mol-hungarian-match.csv), (3) Table S3 in CSV format (microscopic-pKa-statistics-8mol-hungarian-match-table.csv), (4) Table S4 in CSV format (microscopic-pKa-statistics-8mol-microstate- match-table.csv), (5) Figure S1 in CSV format (experimental-microstates-of-8mol-based-on-NMR.csv), (6) The JupyterNotebook used for the enumeration of microstates (enumerate-microstates-with-Epik-and-OpenEye-QUACPAC.ipynb), (7) A CSV table of SAMPL6 molecule IDs and OpenEye OEChem generated SMILES (molecule_ID_and_SMILES.csv).

Abbreviations

SAMPL:

Statistical Assessment of the Modeling of Proteins and Ligands

pK a :

\(-\log _{10}\) of the acid dissociation equilibrium constant

log P :

\(\log _{10}\) of the organic solvent-water partition coefficient (\(K_{ow}\)) of neutral species

log D :

\(\log _{10}\) of organic solvent-water distribution coefficient (\(D_{ow}\))

SEM:

Standard error of the mean

RMSE:

Root mean squared error

MAE:

Mean absolute error

\(\tau \) :

Kendall’s rank correlation coefficient (Tau)

R2 :

Coefficient of determination (R-Squared)

MPSC:

Multiple protonation states correction for binding free energy

DL:

Database lookup

LFER:

Linear free energy relationship

QSPR:

Quantitative structure–property relationship

ML:

Machine learning

QM:

Quantum mechanics

LEC:

Linear empirical correction

References

  1. Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK (2013) The significance of acid/base properties in drug discovery. Chem Soc Rev 42(2):485–496. https://doi.org/10.1039/C2CS35348B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charifson PS, Walters WP (2014) Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem 57(23):9701–9717. https://doi.org/10.1021/jm501000a

    Article  CAS  PubMed  Google Scholar 

  3. Manallack DT, Prankerd RJ, Nassta GC, Ursu O, Oprea TI, Chalmers DK (2013) A chemogenomic analysis of ionization constants-implications for drug discovery. ChemMedChem 8(2):242–255. https://doi.org/10.1002/cmdc.201200507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Oliveira C, Yu HS, Chen W, Abel R, Wang L (2019) Rigorous free energy perturbation approach to estimating relative binding affinities between ligands with multiple protonation and tautomeric states. J Chem Theory Comput 15(1):424–435. https://doi.org/10.1021/acs.jctc.8b00826

    Article  CAS  PubMed  Google Scholar 

  5. Darvey IG (1995) The assignment of pKa values to functional groups in amino acids. Biochem Educ 23(2):80–82. https://doi.org/10.1016/0307-4412(94)00150-N

    Article  CAS  Google Scholar 

  6. Bodner GM (1986) Assigning the pKa’s of polyprotic acids. J Chem Educ 63(3):246. https://doi.org/10.1021/ed063p246

    Article  CAS  Google Scholar 

  7. Murray R (1995) Microscopic equilibria. Anal Chem 95:217

    Google Scholar 

  8. Işık M, Levorse D, Rustenburg AS, Ndukwe IE, Wang H, Wang X, Reibarkh M, Martin GE, Makarov AA, Mobley DL, Rhodes T, Chodera JD (2018) pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments. J Comput Aided Mol Des 32(10):1117–1138. https://doi.org/10.1007/s10822-018-0168-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bochevarov AD, Watson MA, Greenwood JR, Philipp DM (2016) Multiconformation, density functional theory-based p \(K_{{\rm a}}\) prediction in application to large, flexible organic molecules with diverse functional groups. J Chem Theory Comput 12(12):6001–6019. https://doi.org/10.1021/acs.jctc.6b00805

    Article  CAS  PubMed  Google Scholar 

  10. Selwa E, Kenney IM, Beckstein O, Iorga BI (2018) SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies. J Comput Aided Mol Des 32(10):1203–1216. https://doi.org/10.1007/s10822-018-0138-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pickard FC, König G, Tofoleanu F, Lee J, Simmonett AC, Shao Y, Ponder JW, Brooks BR (2016) Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK a corrections. J Comput Aided Mol Des 30(11):1087–1100. https://doi.org/10.1007/s10822-016-9955-7

    Article  CAS  PubMed  Google Scholar 

  12. Bannan CC, Mobley DL, Skillman AG (2018) SAMPL6 challenge results from $$pK\_a$$ predictions based on a general Gaussian process model. J Comput Aided Mol Des 32(10):1165–1177. https://doi.org/10.1007/s10822-018-0169-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Işık M, Levorse D, Mobley DL, Rhodes T, Chodera JD (2020) Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge. J Comput Aided Mol Des 34(4):405–420. https://doi.org/10.1007/s10822-019-00271-3

    Article  CAS  PubMed  Google Scholar 

  14. Işık M, Bergazin TD, Fox T, Rizzi A, Chodera JD, Mobley DL (2020) Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P challenge. J Comput Aided Mol Des 34(4):335–370. https://doi.org/10.1007/s10822-020-00295-0

    Article  CAS  PubMed  Google Scholar 

  15. Kogej T, Muresan S (2005) Database mining for pKa prediction. Curr Drug Discov Technol 2(4):221–229. https://doi.org/10.2174/157016305775202964

    Article  CAS  PubMed  Google Scholar 

  16. Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases, 1st edn. Chapman and Hall, London

    Book  Google Scholar 

  17. Hammett LP (1940) Physical organic chemistry. McGraw-Hill, New York

    Google Scholar 

  18. Taft RW, Lewis IC (1959) Evaluation of resonance effects on reactivity by application of the linear inductive energy relationship V. Concerning a R scale of resonance effects. J Am Chem Soc 81(20):5343–5352. https://doi.org/10.1021/ja01529a025

    Article  CAS  Google Scholar 

  19. Xing L, Glen RC, Clark RD (2003) Predicting p \(K_{{\rm a}}\) by molecular tree structured fingerprints and PLS. J Chem Inf Comput Sci 43(3):870–879. https://doi.org/10.1021/ci020386s

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Kleinöder T, Gasteiger J (2006) Prediction of p \(K_{{\rm a}}\) values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model 46(6):2256–2266. https://doi.org/10.1021/ci060129d

    Article  CAS  PubMed  Google Scholar 

  21. Cruciani G, Milletti F, Storchi L, Sforna G, Goracci L (2009) In silico p \(K_{{\rm a}}\) prediction and ADME profiling. Chem Biodiv 6(11):1812–1821. https://doi.org/10.1002/cbdv.200900153

    Article  CAS  Google Scholar 

  22. Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original p \(K_{{\rm a}}\) prediction method using grid molecular interaction fields. J Chem Inf Model 47(6):2172–2181. https://doi.org/10.1021/ci700018y

    Article  CAS  PubMed  Google Scholar 

  23. Fraczkiewicz R (2013) In silico prediction of ionization. In: Hage DS (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam

    Google Scholar 

  24. Simulations Plus ADMET Predictor v8.5;. Simulations Plus, Lancaster, CA, 2018. https://www.simulations-plus.com/software/admetpredictor/physicochemical-biopharmaceutical/

  25. Radak BK, Chipot C, Suh D, Jo S, Jiang W, Phillips JC, Schulten K, Roux B (2017) Constant-pH molecular dynamics simulations for large biomolecular systems. J Chem Theory Comput 13(12):5933–5944. https://doi.org/10.1021/acs.jctc.7b00875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gunner MR, Murakami T, Rustenburg AS, Işık M, Chodera JD (2020) Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states. J Comput Aided Mol Des 34(5):561–573. https://doi.org/10.1007/s10822-020-00280-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107(5):1263–1271. https://doi.org/10.1021/jp026454v

    Article  CAS  Google Scholar 

  28. Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calculation of pKas in proteins. Proteins 15:252–265

    Article  CAS  Google Scholar 

  29. Special Issue: SAMPL6 (Statistical Assessment of the Modeling of Proteins and Ligands (2018) J Comput Aided Mol Design 32(10)

  30. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691. https://doi.org/10.1007/s10822-007-9133-z

    Article  CAS  PubMed  Google Scholar 

  31. QUACPAC Toolkit (2017) OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  32. OEChem Toolkit (2017) OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  33. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Log Q 2(1–2):83–97. https://doi.org/10.1002/nav.3800020109

    Article  Google Scholar 

  34. Munkres J (1957) Algorithms for the assignment and transportation problems. J SIAM 5(1):28–32

    Google Scholar 

  35. SciPy v1.3.1 (2019) Linear Sum Assignment Documentation. The SciPy community. https://docs.scipy.org/doc/scipy-1.3.1/reference/generated/scipy.optimize.linear_sum_assignment.html

  36. OpenEye pKa Prospector;. OpenEye Scientific Software, Santa Fe, NM. https://www.eyesopen.com/pka-prospector accessed on Jan 23, 2018

  37. ACD/pKa GALAS (ACD/Percepta Kernel v1.6);. Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2018. https://www.acdlabs.com/products/percepta/predictors/pKa/

  38. ACD/pKa Classic (ACD/Percepta Kernel v1.6);. Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2018. https://www.acdlabs.com/products/percepta/predictors/pKa/

  39. Chemicalize v18.23 (ChemAxon MarvinSketch v18.23);. ChemAxon, Budapest, Hungary, 2018. https://docs.chemaxon.com/display/docs/pKa+Plugin

  40. MoKa;. Molecular Discovery, Hertfordshire, UK, 2018. https://www.moldiscovery.com/software/moka/

  41. Zeng Q, Jones MR, Brooks BR (2018) Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge. J Comput Aided Mol Des 32(10):1179–1189. https://doi.org/10.1007/s10822-018-0150-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113(18):2110–2142. https://doi.org/10.1002/qua.24481

    Article  CAS  Google Scholar 

  43. Tielker N, Eberlein L, Güssregen S, Kast SM (2018) The SAMPL6 challenge on predicting aqueous pKa values from EC-RISM theory. J Comput Aided Mol Des 32(10):1151–1163. https://doi.org/10.1007/s10822-018-0140-z

    Article  CAS  PubMed  Google Scholar 

  44. Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First principles calculations of aqueous p \(K_{{\rm a}}\) values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the p \(K_{{\rm a}}\) scale. J Phys Chem A 107(44):9380–9386. https://doi.org/10.1021/jp034688o

    Article  CAS  PubMed  Google Scholar 

  45. Eckert F, Klamt A (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. J Comput Chem 27(1):11–19. https://doi.org/10.1002/jcc.20309

    Article  CAS  PubMed  Google Scholar 

  46. Pracht P, Wilcken R, Udvarhelyi A, Rodde S, Grimme S (2018) High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. J Comput Aided Mol Des 32(10):1139–1149. https://doi.org/10.1007/s10822-018-0145-7

    Article  CAS  PubMed  Google Scholar 

  47. Prasad S, Huang J, Zeng Q, Brooks BR (2018) An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge. J Comput Aided Mol Des 32(10):1191–1201. https://doi.org/10.1007/s10822-018-0167-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robert Fraczkiewicz MW (2018) SAMPL6 pKa Challenge: Predictions of ionization constants performed by the S+pKa method implemented in ADMET Predictor software. The Joint D3R/SAMPL Workshop 2018. https://drugdesigndata.org/about/d3r-2018-workshop

  49. OEMolProp Toolkit 2017.Feb.1;. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  50. Balogh GT, Tarcsay Á, Keserű GM (2012) Comparative evaluation of pKa prediction tools on a drug discovery dataset. J Pharm Biomed Anal 67–68:63–70. https://doi.org/10.1016/j.jpba.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  51. Settimo L, Bellman K, Knegtel RMA (2014) Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res 31(4):1082–1095. https://doi.org/10.1007/s11095-013-1232-z

    Article  CAS  PubMed  Google Scholar 

  52. Meloun M, Bordovská S (2007) Benchmarking and Validating algorithms that estimate pK a values of drugs based on their molecular structures. Anal Bioanal Chem 389(4):1267–1281. https://doi.org/10.1007/s00216-007-1502-x

    Article  CAS  PubMed  Google Scholar 

  53. Liao C, Nicklaus MC (2009) Comparison of nine programs predicting p \(K_{{\rm a}}\) values of pharmaceutical substances. J Chem Inf Model 49(12):2801–2812. https://doi.org/10.1021/ci900289x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manchester J, Walkup G, Rivin O, You Z (2010) Evaluation of p \(K_{{\rm a}}\) estimation methods on 211 druglike compounds. J Chem Inf Model 50(4):565–571. https://doi.org/10.1021/ci100019p

    Article  CAS  PubMed  Google Scholar 

  55. Mansouri K, Cariello NF, Korotcov A, Tkachenko V, Grulke CM, Sprankle CS, Allen D, Casey WM, Kleinstreuer NC, Williams AJ (2019) Open-source QSAR models for pKa prediction using multiple machine learning approaches. J Cheminf 1:11

    Google Scholar 

  56. Baltruschat M (2020) Machine learning meets pKa [version 2; peer review: 2 approved]. F1000Research 9:113. https://doi.org/10.12688/f1000research.22090.2

    Article  Google Scholar 

  57. Hunt P, Hosseini-Gerami L, Chrien T, Plante J, Ponting DJ, Segall M (2020) Predicting p \(K_{{\rm a}}\) using a combination of semi-empirical quantum mechanics and radial basis function methods. J Chem Inf Model 60(6):2989–2997. https://doi.org/10.1021/acs.jcim.0c00105

    Article  CAS  PubMed  Google Scholar 

  58. Zdrazil B, Guha R (2018) The rise and fall of a scaffold: a trend analysis of scaffolds in the medicinal chemistry literature. J Med Chem 61(11):4688–4703. https://doi.org/10.1021/acs.jmedchem.7b00954

    Article  CAS  PubMed  Google Scholar 

  59. Ertl P, Altmann E, McKenna JM (2020) The most common functional groups in bioactive molecules and how their popularity has evolved over time. J Med Chem 63(15):8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the infrastructure and website support of Mike Chiu that allowed a seamless collection of challenge submissions. Mike Chiu also provided assistance with constructing a submission validation script to ensure all submissions adhered to the machine-readable format. We are grateful to Kiril Lanevskij for suggesting the Hungarian algorithm for matching experimental and predicted \(\text {p}K_{\text{a}}\) values. We would like to thank Thomas Fox for providing MoKa reference calculations. We acknowledge Caitlin Bannan for guidance on defining a working microstate definition for the challenge and guidance for designing the challenge. We thank Brad Sherborne for his valuable insights at the conception of the \(\text {p}K_{\text{a}}\) challenge and connecting us with Timothy Rhodes and Dorothy Levorse who were able to provide resources and expertise for experimental measurements performed at MRL. We acknowledge Paul Czodrowski who provided feedback on multiple stages of this work: challenge construction, purchasable compound selection, and manuscript draft. MI, JDC, and DLM gratefully acknowledge support from NIH Grant R01GM124270 supporting the SAMPL Blind Challenges. MI, ASR, AR, and JDC acknowledge support from the Sloan Kettering Institute. JDC acknowledges support from NIH Grant P30CA008748 and NIH Grant R01GM121505. DLM appreciates financial support from the National Institutes of Health (Grant No. R01GM108889) and the National Science Foundation (Grant No. CHE 1352608). MRG acknowledges support of MCB-1519640 from the National Science Foundation. MI acknowledges Doris J. Hutchinson Fellowship. MI, ASR, AR, and JDC are grateful to OpenEye Scientific for providing a free academic software license for use in this work. MI, ASR, AR, and JDC thank Janos Fejervari and ChemAxon team that gave us permission to include ChemAxon/Chemicalize \(\text {p}K_{\text{a}}\) predictions as a reference prediction in challenge analysis.

Disclaimers

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MI, JDC ; Methodology, MI, JDC, ASR ; Software, MI, AR, ASR ; Formal Analysis, MI, ASR ; Investigation, MI ; Resources, JDC, DLM; Data Curation, MI ; Writing-Original Draft, MI; Writing - Review and Editing, MI, JDC, ASR, AR, DLM, MRG; Visualization, MI, AR ; Supervision, JDC, DLM ; Project Administration, MI ; Funding Acquisition, JDC, DLM, MI.

Corresponding author

Correspondence to Mehtap Işık.

Ethics declarations

Conflict of interest

JDC was a member of the Scientific Advisory Board for Schrödinger, LLC during part of this study, and is a current Scientific Advisory Board member for OpenEye Scientific and scientific advisor to Foresite Labs. DLM is a current member of the Scientific Advisory Board of OpenEye Scientific and an Open Science Fellow with Silicon Therapeutics. The Chodera laboratory receives or has received funding from multiple sources, including the National Institutes of Health, the National Science Foundation, the Parker Institute for Cancer Immunotherapy, Relay Therapeutics, Entasis Therapeutics, Vir Biotechnology, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir Biotechnology, XtalPi, the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, Cycle for Survival, a Louis V. Gerstner Young Investigator Award, The Einstein Foundation, and the Sloan Kettering Institute. A complete list of funding can be found at http://choderalab.org/funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, M., Rustenburg, A.S., Rizzi, A. et al. Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions. J Comput Aided Mol Des 35, 131–166 (2021). https://doi.org/10.1007/s10822-020-00362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00362-6

Keywords

Navigation