Skip to main content

Advertisement

Log in

The role of CoQ10 in embryonic development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang L, Sang Q. MOS is a novel genetic marker for human early embryonic arrest and fragmentation. EMBO Mol Med. 2021;13(12):e15323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99(3):744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update. 2006;12(3):233–42.

    Article  PubMed  Google Scholar 

  4. Zhao J, et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84.

    Article  CAS  PubMed  Google Scholar 

  5. Wang M, et al. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update. 2022;28(2):200–31.

    Article  CAS  PubMed  Google Scholar 

  6. Gott AL, et al. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  7. Rossmann MP, et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1gamma drives erythropoiesis. Science. 2021;372(6543):716–21.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. You X, et al. Embryonic expression of Nras(G 12 D) leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9: 633661.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu YD Yang, and GY Chen. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46.

  10. Drovandi S, et al. Variation of the clinical spectrum and genotype-phenotype associations in coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603.

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths KK, et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26.

    Article  CAS  PubMed  Google Scholar 

  12. Ogasahara S, et al. Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurology. 1986;36(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  13. Pallotti F et al. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci. 2021;23(1):128.

  14. Gutierrez-Mariscal FM et al. Coenzyme Q(10) Supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870.

  15. Wang Y, Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26(5):367–78.

    Article  CAS  PubMed  Google Scholar 

  16. Lapuente-Brun E, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alcazar-Fabra M, et al. Primary coenzyme Q deficiencies: a literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao M, et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24.

    Article  CAS  PubMed  Google Scholar 

  20. Paredes-Fuentes AJ et al. Coenzyme Q(10) Treatment monitoring in different human biological samples. Antioxidants (Basel). 2020;9(10):979.

  21. Griffiths KKA Wang, and RJ Levy. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022(184):10.3791/63646.

  22. Barajas M, et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63.

    Article  CAS  PubMed  Google Scholar 

  23. Chazaud C, et al. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10(5):615–24.

    Article  CAS  PubMed  Google Scholar 

  24. Gauster M, et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol. 1979;52:141–52.

    CAS  PubMed  Google Scholar 

  26. Lawson KA and RA Pedersen. Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found Symp, 1992;165:3–21.

  27. Smith JL, Schoenwolf GC. Neurulation: coming to closure. Trends Neurosci. 1997;20(11):510–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tam PP, Tan SS. The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development. 1992;115(3):703–15.

    Article  CAS  PubMed  Google Scholar 

  29. Wardle FC. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2.

    Article  PubMed  Google Scholar 

  30. Adhikari D, et al. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77.

    Article  PubMed  Google Scholar 

  31. Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85(3):584–91.

  32. Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128(3):269–80.

    Article  PubMed  Google Scholar 

  33. Tarazona AM, et al. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim. 2006;41(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  34. Czernik M, et al. Author correction: mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):21276.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marchante M, et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74.

    PubMed  Google Scholar 

  36. He J, et al. Theaflavin 3, 3’-digallate delays ovarian aging by improving oocyte quality and regulating granulosa cell function. Oxid Med Cell Longev. 2021;2021:7064179.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin X, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun. 2022;13(1):914.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Reest J, et al. Mitochondria: their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378.

    Article  ADS  PubMed  Google Scholar 

  39. Jiang Z, Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22.

    Article  CAS  PubMed  Google Scholar 

  40. Perez GI, et al. Mitochondria and the death of oocytes. Nature. 2000;403(6769):500–1.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zhang H, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol. 2022;49:102215.

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, et al. Transcriptomic responses of porcine cumulus cells to heat exposure during oocytes in vitro maturation. Mol Reprod Dev. 2021;88(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  43. Hu Y, et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Da Luz CM, et al. Altered transcriptome in cumulus cells of infertile women with advanced endometriosis with and without endometrioma. Reprod Biomed Online. 2021;42(5):952–62.

    Article  PubMed  Google Scholar 

  46. Ma Y, et al. Corrigendum: arachidonic acid in follicular fluid of PCOS induces oxidative stress in a human ovarian granulosa tumor cell line (KGN) and upregulates GDF15 expression as a response. Front Endocrinol (Lausanne). 2022;13:988767.

    Article  PubMed  Google Scholar 

  47. Jochems R, et al. Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs. Theriogenology. 2022;190:15–21.

    Article  CAS  PubMed  Google Scholar 

  48. Yu L, et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523.

    Article  PubMed  Google Scholar 

  49. Krawczyk K, et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305.

    Article  CAS  PubMed  Google Scholar 

  50. Barcelos IP, Haas RH. CoQ10 and aging. Biology (Basel). 2019;8(2):28.

  51. Yang CX, et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86.

    Article  CAS  PubMed  Google Scholar 

  52. Giannubilo SR et al. CoQ10 supplementation in patients undergoing IVF-ET: the relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141.

  53. Niu YJ, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY). 2020;12(2):1256–71.

    Article  CAS  PubMed  Google Scholar 

  54. Brown AM, McCarthy HE. The effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52.

  55. Yang J, et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee CH, et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  57. Yang L, et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772.

    Article  PubMed  Google Scholar 

  58. Heydarnejad A, et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24.

    Article  CAS  PubMed  Google Scholar 

  59. Ruiz-Conca M, et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72.

    Article  CAS  PubMed  Google Scholar 

  60. Gendelman M, Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118.

    Article  PubMed  Google Scholar 

  61. Trapphoff T, et al. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod. 2016;31(1):133–49.

    Article  CAS  PubMed  Google Scholar 

  62. Miao Y, et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987.

    Article  CAS  PubMed  Google Scholar 

  63. Zielinska AP et al. Meiotic kinetochores fragment into multiple lobes upon cohesin loss in aging eggs. Curr Biol. 2019;29(22):3749–3765.

  64. Miao Y, et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang M, et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94.

    Article  CAS  PubMed  Google Scholar 

  66. Jeong SM, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeng J, et al. SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging Cell. 2018;17(4):e12789.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xing X, et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203.

    CAS  PubMed  Google Scholar 

  69. Ben-Meir A, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McReynolds S et al. Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril. 2012;98(6):1574–80.

  71. Ben-Meir A et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58.

  72. Agarwal A, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health. 2019;37(3):296–312.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Barrachina F, et al. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod. 2022;37(4):651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tourzani DA et al. Caput ligation renders immature mouse sperm motile and capable to undergo cAMP-dependent phosphorylation. Int J Mol Sci. 2021;22(19):10241.

  75. Moustakli E et al. Sperm mitochondrial content and mitochondrial DNA to nuclear DNA ratio are associated with body mass index and progressive motility. Biomedicines. 2023;11(11):3014.

  76. Park YJ, et al. Low sperm motility is determined by abnormal protein modification during epididymal maturation. World J Mens Health. 2022;40(3):526–35.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Park YJ, Pang MG. Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants (Basel). 2021;10(1):98.

  78. Chen X, et al. Identification of differentially expressed proteins between bull X and Y spermatozoa. J Proteomics. 2012;77:59–67.

    Article  CAS  PubMed  Google Scholar 

  79. Sengupta P, et al. Oxidative stress and idiopathic male infertility. Adv Exp Med Biol. 2022;1358:181–204.

    Article  CAS  PubMed  Google Scholar 

  80. Shahid M, et al. Male infertility: role of vitamin D and oxidative stress markers. Andrologia. 2021;53(8):e14147.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  81. Liu KS, et al. Effect and mechanisms of reproductive tract infection on oxidative stress parameters, sperm DNA fragmentation, and semen quality in infertile males. Reprod Biol Endocrinol. 2021;19(1):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oseguera-Lopez I et al. Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) alters protein phosphorylation, increase ROS levels and DNA fragmentation during in vitro capacitation of boar spermatozoa. Animals (Basel). 2020;10(10):1934.

  83. Li KP, Yang XS, Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2022;13:810242.

    Article  PubMed  Google Scholar 

  84. Alahmar AT, et al. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Mens Health. 2021;39(2):346–51.

    Article  PubMed  Google Scholar 

  85. Balercia G, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009;91(5):1785–92.

    Article  CAS  PubMed  Google Scholar 

  86. Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol. 2009;182(1):237–48.

    Article  CAS  PubMed  Google Scholar 

  87. Bellusci M, et al. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary coenzyme Q(10) deficiency. JIMD Rep. 2021;62(1):3–5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li M, et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Laugwitz L, et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87.

    Article  CAS  PubMed  Google Scholar 

  90. Wang N, et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2021;12: 811833.

    Article  CAS  PubMed  Google Scholar 

  91. Olgac A, et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70.

    Article  CAS  PubMed  Google Scholar 

  92. Chambers BE, NE Weaver, Wingert RA. The "3Ds" of growing kidney organoids: advances in nephron development, disease modeling, and drug screening. Cells. 2023;12(4):549.

  93. Zhai SB, et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stanczyk M, et al. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy-a case report. Pediatr Nephrol. 2018;33(12):2383–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Suciu SK, Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42.

    Article  CAS  PubMed  Google Scholar 

  96. Muigg V, et al. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44: 102177.

    Article  PubMed  Google Scholar 

  97. Musumeci O, et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001;56(7):849–55.

    Article  CAS  PubMed  Google Scholar 

  98. Monfrini E, et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rius R, et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Justine Perrin R, et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Turnis ME, et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martinez PA, et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine beta-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bai X, et al. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell. 2010;142(1):133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Drakhlis L, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Robichaux DJ, et al. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55.

    Article  CAS  PubMed  Google Scholar 

  106. Yan A, et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson’s disease mice. Front Cell Neurosci. 2018;12:529.

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi M, Shimizu T, Shirasawa T. Reversal of slow growth and heartbeat through the restoration of mitochondrial function in clk-1-deficient mouse embryos by exogenous administration of coenzyme Q10. Exp Gerontol. 2012;47(6):425–31.

    Article  CAS  PubMed  Google Scholar 

  108. Smith AC, et al. A family segregating lethal neonatal coenzyme Q(10) deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29.

    Article  CAS  PubMed  Google Scholar 

  109. Danhauser K, et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4.

    Article  CAS  PubMed  Google Scholar 

  110. Miles MV. The uptake and distribution of coenzyme Q10. Mitochondrion. 2007;7(Suppl):S72–7.

    Article  CAS  PubMed  Google Scholar 

  111. Teran E, et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Budani MC, Tiboni GM. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612.

Download references

Funding

This work was supported by National Key Research and Development Project (2019YFA0801601 to Zhisheng Jiang), National Natural Science Foundation of China (No. 32101018 to Miao Jiang), and Hunan Provincial Natural Science Foundation of China (No. 2023JJ30522 to Miao Jiang).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xueke He and Miao Jiang; resources, Xueke He and Minjun Liao; writing—original draft preparation, Xueke He; writing—review and editing, Xueke He, Hao Chen, Minjun Liao, Xiaomei Zhao, Miao Jiang, and Da-wei Zhang; supervision, Miao Jiang; funding acquisition, Miao Jiang and Zhisheng Jiang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Miao Jiang.

Ethics declarations

Institutional review board

Not applicable.

Informed consent

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Chen, H., Liao, M. et al. The role of CoQ10 in embryonic development. J Assist Reprod Genet 41, 767–779 (2024). https://doi.org/10.1007/s10815-024-03052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03052-6

Keywords

Navigation