Skip to main content

Oxidative Stress and Idiopathic Male Infertility

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Abstract

Idiopathic male infertility (IMI) refers to the condition where semen quality declines, but exact causatives are not identified. This occurs in almost 30–40% of infertile men. Traditional semen analyses are extensively used for determining semen quality, but these bear critical shortcomings such as poor reproducibility, subjectivity, and reduced prediction of fertility. Oxidative stress (OS) has been identified as the core common mechanism by which various endogenous and exogenous factors may induce IMI. Male oxidative stress infertility (MOSI) is a term used to describe infertile males with abnormal semen parameters and OS. For the treatment of MOSI, antioxidants are mostly used which counteract OS and improve sperm parameters with appropriate combinations, dosage, and duration. Diagnosis and management of male infertility have witnessed a substantial improvement with the advent in the omics technologies that address at genetic, molecular, and cellular levels. Incorporation of oxidation-reduction potential (ORP) can be a useful clinical biomarker for MOSI. Moreover, various modulations of male fertility status can be achieved via stem cell and next-generation sequencing (NGS) technologies. However, several challenges must be overcome before the advanced techniques can be utilized to address IMI, including ethical and religious considerations, as well as the possibility of genetic abnormalities. Considering the importance of robust understanding of IMI, its diagnosis, and possible advents in management, the present article reviews and updates the available information in this realm, emphasizes various facets of IMI, role of OS in its pathophysiology, and discusses the novel concept of MOSI with a focus on its diagnostic and therapeutic aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, et al. European Association of urology guidelines on male infertility: the 2012 update. Eur Urol. 2012;62(2):324–32.

    Article  PubMed  Google Scholar 

  2. Leslie S, Siref L, Soon-Sutton T, Khan MA. Male infertility. StatPearls; 2021.

    Google Scholar 

  3. Rutstein SO, Shah IH. Infecundity, infertility, and childlessness in developing countries. DHS comparative reports no. 9. Calverton: ORC Macro and the World Health Organization. 2004.

    Google Scholar 

  4. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.

    PubMed  PubMed Central  Google Scholar 

  5. Agarwal A, Parekh N, Selvam MKP, Henkel R, Shah R, Homa ST, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Men’s Health. 2019;37(3):296–312.

    Article  Google Scholar 

  6. Agarwal A, Virk G, Ong C, Du Plessis SS. Effect of oxidative stress on male reproduction. World J Men’s Health. 2014;32(1):1–17.

    Article  Google Scholar 

  7. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol. 2018;16(1):35–43.

    Article  PubMed  Google Scholar 

  8. Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518–27.

    Article  CAS  PubMed  Google Scholar 

  9. Natioanl Institute of Health (NIH). How common is male infertility, and what are its causes? Available from: https://www.nichd.nih.gov/health/topics/menshealth/conditioninfo/infertility. 2016.

  10. Winters BR, Walsh TJ. The epidemiology of male infertility. Urol Clin North Am. 2014;41(1):195–204.

    Article  PubMed  Google Scholar 

  11. Sengupta P, Dutta S, Alahmar AT, D’souza UJA. Reproductive tract infection, inflammation and male infertility. Chem Biol Lett. 2020;7(2):75–84.

    CAS  Google Scholar 

  12. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353–68.

    Article  CAS  PubMed  Google Scholar 

  13. Mazur DJ, Lipshultz LI. Infertility in the aging male. Curr Urol Rep. 2018;19(7):1–9.

    Article  Google Scholar 

  14. Cheung S, Parrella A, Rosenwaks Z, Palermo GD. Genetic and epigenetic profiling of the infertile male. PLoS One. 2019;14(3):e0214275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wallach EE, Moghissi KS. Unexplained infertility. Fertil Steril. 1983;39(1):5–21.

    Article  PubMed  Google Scholar 

  16. Hamada A, Esteves SC, Agarwal A. Unexplained male infertility: potential causes and management. Hum Androl. 2011;1(1):2–16.

    Article  Google Scholar 

  17. Dohle G. Male factors in couple’s infertility. In: Clinical uro-andrology. Berlin: Springer; 2015. p. 197–201.

    Google Scholar 

  18. Ko EY, Siddiqi K, Brannigan RE, Sabanegh ES Jr. Empirical medical therapy for idiopathic male infertility: a survey of the American Urological Association. J Urol. 2012;187(3):973–8.

    Article  PubMed  Google Scholar 

  19. Sengupta P, Dutta S. Metals. In: Encyclopedia of reproduction. Elsevier; 2018.

    Google Scholar 

  20. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16(1):1–14.

    Article  CAS  Google Scholar 

  21. Sengupta P, Banerjee R. Environmental toxins: alarming impacts of pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017–39.

    Article  PubMed  CAS  Google Scholar 

  22. Aktan G, Doğru-Abbasoğlu S, Küçükgergin C, Kadıoğlu A, Özdemirler-Erata G, Koçak-Toker N. Mystery of idiopathic male infertility: is oxidative stress an actual risk? Fertil Steril. 2013;99(5):1211–5.

    Article  CAS  PubMed  Google Scholar 

  23. Ambasudhan R, Singh K, Agarwal J, Singh S, Khanna A, Sah R, et al. Idiopathic cases of male infertility from a region in India show low incidence of Y-chromosome microdeletion. J Biosci. 2003;28(5):605–12.

    Article  CAS  PubMed  Google Scholar 

  24. Dutta S, Henkel R, Sengupta P, Agarwal A. Physiological role of ROS in sperm function. Male infertility. Springer; 2020. p. 337–45.

    Book  Google Scholar 

  25. Agarwal A, Sengupta P. Oxidative stress and its association with male infertility. Male infertility: Springer; 2020. p. 57–68.

    Google Scholar 

  26. Dutta S, Sengupta P. Role of nitric oxide on male and female reproduction. Malays. J Med Sci. 2021;

    Google Scholar 

  27. Adewoyin M, Mohsin SM, Arulselvan P, Hussein MZ, Fakurazi S. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. Drug Des Dev Ther. 2015;9:2475–84.

    CAS  Google Scholar 

  28. Dutta S, Sengupta P, Chhikara BS. Reproductive inflammatory mediators and male infertility. Chem Biol Lett. 2020;7(2):73–4.

    Google Scholar 

  29. Theam OC, Dutta S, Sengupta P. Role of leucocytes in reproductive tract infections and male infertility. Chem Biol Lett. 2020;7(2):124–30.

    CAS  Google Scholar 

  30. Dutta S, Sengupta P, Hassan MF, Biswas A. Role of toll-like receptors in the reproductive tract inflammation and male infertility. Chem Biol Lett. 2020;7(2):113–23.

    CAS  Google Scholar 

  31. Irez T, Bicer S, Sahin E, Dutta S, Sengupta P. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem Biol Lett. 2020;7(2):131–9.

    CAS  Google Scholar 

  32. Sarkar O, Bahrainwala J, Chandrasekaran S, Kothari S, Mathur PP, Agarwal A. Impact of inflammation on male fertility. Front Biosci. 2011;3:89–95.

    Google Scholar 

  33. Zhang X, Diao R, Zhu X, Li Z, Cai Z. Metabolic characterization of asthenozoospermia using nontargeted seminal plasma metabolomics. Clin Chim Acta. 2015;450:254–61.

    Article  CAS  PubMed  Google Scholar 

  34. Liew SH, Meachem SJ, Hedger MP. A stereological analysis of the response of spermatogenesis to an acute inflammatory episode in adult rats. J Androl. 2007;28(1):176–85.

    Article  PubMed  Google Scholar 

  35. Pasqualotto FF, Sharma RK, Potts JM, Nelson DR, Thomas AJ, Agarwal A. Seminal oxidative stress in patients with chronic prostatitis. Urology. 2000;55(6):881–5.

    Article  CAS  PubMed  Google Scholar 

  36. Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–113.

    Article  CAS  PubMed  Google Scholar 

  37. Zamani-Badi T, Karimian M, Azami-Tameh A, Nikzad H. Association of C3953T transition in interleukin 1β gene with idiopathic male infertility in an Iranian population. Hum Fertil. 2019;22(2):111–7.

    Article  CAS  Google Scholar 

  38. Zamani-Badi T, Nikzad H, Karimian M. IL-1RA VNTR and IL-1α 4845G>T polymorphisms and risk of idiopathic male infertility in Iranian men: a case-control study and an in silico analysis. Andrologia. 2018;50(9):e13081.

    Article  PubMed  CAS  Google Scholar 

  39. Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16(3):123–9.

    PubMed  PubMed Central  Google Scholar 

  40. Agarwal A, Esteves SC. Varicocele and male infertility: current concepts and future perspectives. Asian J Androl. 2016;18(2):161–2.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mostafa T, Anis T, El Nashar A, Imam H, Osman I. Seminal plasma reactive oxygen species-antioxidants relationship with varicocele grade. Andrologia. 2012;44(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–90.

    Article  PubMed  CAS  Google Scholar 

  43. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  44. Türkyilmaz Z, Gülen S, Sönmez K, Karabulut R, Dinçer S, Can Başaklar A, et al. Increased nitric oxide is accompanied by lipid oxidation in adolescent varicocele. Int J Adrol. 2004;27(3):183–7.

    Article  Google Scholar 

  45. Altunoluk B, Efe E, Kurutas EB, Gul AB, Atalay F, Eren M. Elevation of both reactive oxygen species and antioxidant enzymes in vein tissue of infertile men with varicocele. Urol Int. 2012;88(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  46. Bhattacharya K, Sengupta P, Dutta S, Bhattacharya S. Pathophysiology of obesity: endocrine, inflammatory and neural regulators. Res J Pharm Technol. 2020;13(9):4469–78.

    Article  Google Scholar 

  47. Dutta S, Biswas A, Sengupta P. Obesity, endocrine disruption and male infertility. Asian Pac J Reprod. 2019;8(5):195.

    Article  CAS  Google Scholar 

  48. Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics. 2016;8:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cui X, Jing X, Wu X, Wang Z, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep. 2016;14(1):753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhattacharya K, Sengupta P, Dutta S, Karkada IR. Obesity, systemic inflammation and male infertility. Chem Biol Lett. 2020;7(2):92–8.

    CAS  Google Scholar 

  51. Bakos HW, Mitchell M, Setchell BP, Lane M. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011;34(5 Pt 1):402–10.

    Article  CAS  PubMed  Google Scholar 

  52. Garolla A, Torino M, Miola P, Caretta N, Pizzol D, Menegazzo M, et al. Twenty-four-hour monitoring of scrotal temperature in obese men and men with a varicocele as a mirror of spermatogenic function. Hum Reprod. 2015;30(5):1006–13.

    Article  CAS  PubMed  Google Scholar 

  53. Shiraishi K, Takihara H, Matsuyama H. Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol. 2010;28(3):359–64.

    Article  CAS  PubMed  Google Scholar 

  54. Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, et al. Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases. 2017;5(1)

    Google Scholar 

  55. Izuka E, Menuba I, Sengupta P, Dutta S, Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem Biol Lett. 2020;7(2):156–65.

    CAS  Google Scholar 

  56. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17(3):276–87.

    CAS  PubMed  Google Scholar 

  57. Said TM, Agarwal A, Sharma RK, Mascha E, Sikka SC, Thomas AJ Jr. Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil Steril. 2004;82(4):871–7.

    Article  CAS  PubMed  Google Scholar 

  58. Golas A, Malek P, Piasecka M, Styrna J. Sperm mitochondria diaphorase activity – a gene mapping study of recombinant inbred strains of mice. Int J Dev Biol. 2010;54(4):667–73.

    Article  CAS  PubMed  Google Scholar 

  59. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  61. Fariello RM, Del Giudice PT, Spaine DM, Fraietta R, Bertolla RP, Cedenho AP. Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet. 2009;26(2–3):151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sharma R, Gupta S, Henkel R. Relevance of leukocytospermia and semen culture and its true place in diagnosing and treating male infertility. 2021.

    Google Scholar 

  63. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  64. Hamada A, Agarwal A, Sharma R, French DB, Ragheb A, Sabanegh ES Jr. Empirical treatment of low-level leukocytospermia with doxycycline in male infertility patients. Urology. 2011;78(6):1320–5.

    Article  PubMed  Google Scholar 

  65. Aboulmaouahib S, Madkour A, Kaarouch I, Sefrioui O, Saadani B, Copin H, et al. Impact of alcohol and cigarette smoking consumption in male fertility potential: Looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia. 2018;50(3)

    Google Scholar 

  66. Brand JS, Chan MF, Dowsett M, Folkerd E, Wareham NJ, Luben RN, et al. Cigarette smoking and endogenous sex hormones in postmenopausal women. J Clin Endocrinol Metab. 2011;96(10):3184–92.

    Article  CAS  PubMed  Google Scholar 

  67. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Env Res Pub Health. 2009;6(2):445–62.

    Article  CAS  Google Scholar 

  68. Ghaffari MA, Rostami M. The effect of cigarette smoking on human sperm creatine kinase activity: as an ATP buffering system in sperm. Int J Fertil Steril. 2013;6(4):258–65.

    PubMed  PubMed Central  Google Scholar 

  69. Gogol P, Szcześniak-Fabiańczyk B, Wierzchoś-Hilczer A. The photon emission, ATP level and motility of boar spermatozoa during liquid storage. Reprod Biol. 2009;9(1):39–49.

    Article  PubMed  Google Scholar 

  70. Hamad MF, Shelko N, Kartarius S, Montenarh M, Hammadeh ME. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology. 2014;2(5):666–77.

    Article  CAS  PubMed  Google Scholar 

  71. Guthauser B, Boitrelle F, Plat A, Thiercelin N, Vialard F. Chronic excessive alcohol consumption and male fertility: a case report on reversible azoospermia and a literature review. Alcohol Alcohol. 2014;49(1):42–4.

    Article  PubMed  Google Scholar 

  72. Manzo-Avalos S, Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int J Env Res Pub Health. 2010;7(12):4281–304.

    Article  CAS  Google Scholar 

  73. Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, et al. S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol. 2006;291(5):G857–67.

    Article  CAS  PubMed  Google Scholar 

  74. Angelopoulou R, Lavranos G, Manolakou P. ROS in the aging male: model diseases with ROS-related pathophysiology. Reprod Toxicol. 2009;28(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  75. Kesari KK, Agarwal A, Henkel R. Radiations and male fertility. Reprod Biol Endocrinol. 2018;16(1):118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019;51(3):e13201.

    Article  PubMed  CAS  Google Scholar 

  77. Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  79. Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar rats. Electromag Biol Med. 2017;36(1):20–30.

    CAS  Google Scholar 

  80. Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromag Biol Med. 2011;30(4):219–34.

    Article  CAS  Google Scholar 

  81. Gracia CR, Sammel MD, Coutifaris C, Guzick DS, Barnhart KT. Occupational exposures and male infertility. Am J Epidemiol. 2005;162(8):729–33.

    Article  PubMed  Google Scholar 

  82. Sabés-Alsina M, Tallo-Parra O, Mogas MT, Morrell JM, Lopez-Bejar M. Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa. Anim Reprod Sci. 2016;173:18–23.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One. 2012;7(7):e41412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pereira C, Mapuskar K, Rao CV. Chronic toxicity of diethyl phthalate in male Wistar rats – a dose-response study. Regul Toxicol Pharmacol. 2006;45(2):169–77.

    Article  CAS  PubMed  Google Scholar 

  85. Pant N, Shukla M, Kumar Patel D, Shukla Y, Mathur N, Kumar Gupta Y, et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol. 2008;231(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  86. Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M, et al. Exposure to ambient air pollution – does it affect semen quality and the level of reproductive hormones? Ann Hum Biol. 2016;43(1):50–6.

    Article  PubMed  Google Scholar 

  87. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev. 1995;7(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  88. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    CAS  PubMed  Google Scholar 

  89. Bui AD, Sharma R, Henkel R, Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 2018;50(8):e13012.

    Article  CAS  PubMed  Google Scholar 

  90. Moretti E, Collodel G, Fiaschi AI, Micheli L, Iacoponi F, Cerretani D. Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod Biol. 2017;17(4):370–5.

    Article  PubMed  Google Scholar 

  91. Takeshima T, Usui K, Mori K, Asai T, Yasuda K, Kuroda S, et al. Oxidative stress and male infertility. Reprod Med Biol. 2021;20(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  92. Fernández JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.

    PubMed  Google Scholar 

  93. Cariati F, Jaroudi S, Alfarawati S, Raberi A, Alviggi C, Pivonello R, et al. Investigation of sperm telomere length as a potential marker of paternal genome integrity and semen quality. Reprod Biomed Online. 2016;33(3):404–11.

    Article  CAS  PubMed  Google Scholar 

  94. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  CAS  PubMed  Google Scholar 

  95. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  96. Kuroda S, Takeshima T, Takeshima K, Usui K, Yasuda K, Sanjo H, et al. Early and late paternal effects of reactive oxygen species in semen on embryo development after intracytoplasmic sperm injection. Syst Biol Reprod Med. 2020;66(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  97. Lone S, Shah N, Yadav HP, Wagay MA, Singh A, Sinha R. Sperm DNA damage causes, assessment and relationship with fertility: a review. Theriogenol Insight. 2017;7(1):13–20.

    Article  Google Scholar 

  98. Chen CH, Lee SS, Chen DC, Chien HH, Chen IC, Chu YN, et al. Apoptosis and kinematics of ejaculated spermatozoa in patients with varicocele. J Androl. 2004;25(3):348–53.

    Article  PubMed  Google Scholar 

  99. Krammer PH, Behrmann I, Daniel P, Dhein J, Debatin K-M. Regulation of apoptosis in the immune system. Curr Opinion Immunol. 1994;6(2):279–89.

    Article  CAS  Google Scholar 

  100. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.

    Article  CAS  PubMed  Google Scholar 

  101. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, et al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993;262(5137):1274–7.

    Article  CAS  PubMed  Google Scholar 

  102. Sakkas D, Mariethoz E, John JCS. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.

    Article  CAS  PubMed  Google Scholar 

  103. Paasch U, Sharma RK, Gupta AK, Grunewald S, Mascha EJ, Thomas AJ Jr, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod. 2004;71(6):1828–37.

    Article  CAS  PubMed  Google Scholar 

  104. Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. Clinics. 2011;66(4):691–700.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Medina S, Domínguez-Perles R, Cejuela-Anta R, Villaño D, Martínez-Sanz JM, Gil P, et al. Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prost Lipid Mediat. 2012;99(3–4):79–86.

    Article  CAS  Google Scholar 

  106. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol. 2019;17(2):87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Agarwal A, Wang SM. Clinical relevance of oxidation-reduction potential in the evaluation of male infertility. Urology. 2017;104:84–9.

    Article  PubMed  Google Scholar 

  108. Tanaka T, Kobori Y, Terai K, Inoue Y, Osaka A, Yoshikawa N, et al. Seminal oxidation–reduction potential and sperm DNA fragmentation index increase among infertile men with varicocele. Hum Fertil. 2020:1–5.

    Google Scholar 

  109. Okouchi S, Ohnami H, Shoji M, Ohno Y, Ikeda S, Agishi Y, et al. Effects of electrolyzed-reduced water as artificial hot spring water on human skin and hair. 2005.

    Google Scholar 

  110. Robert KA, Sharma R, Henkel R, Agarwal A. An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia. 2021;53(2):e13726.

    Article  CAS  PubMed  Google Scholar 

  111. Homa ST, Vassiliou AM, Stone J, Killeen AP, Dawkins A, Xie J, et al. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes. 2019;10(3):236.

    Article  CAS  PubMed Central  Google Scholar 

  112. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8(6):616–27.

    Article  CAS  PubMed  Google Scholar 

  113. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fujii J, Iuchi Y, Matsuki S, Ishii T. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl. 2003;5(3):231–42.

    CAS  PubMed  Google Scholar 

  115. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Centr Eur J Urol. 2013;66(1):60.

    Article  CAS  Google Scholar 

  116. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Int. 2006;160(1):1–40.

    Article  CAS  Google Scholar 

  117. Lenzi A, Lombardo F, Sgrò P, Salacone P, Caponecchia L, Dondero F, et al. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril. 2003;79(2):292–300.

    Article  PubMed  Google Scholar 

  118. Opuwari CS, Henkel RR. An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int. 2016;2016:9540142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Maya-Soriano MJ, Taberner E, Sabés-Alsina M, López-Béjar M. Retinol might stabilize sperm acrosomal membrane in situations of oxidative stress because of high temperatures. Theriogenology. 2013;79(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  120. Comhaire F, Mahmoud A. The andrologist's contribution to a better life for ageing men: part 2. Andrologia. 2016;48(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  121. Jacob RA, Pianalto FS, Agee RE. Cellular ascorbate depletion in healthy men. J Nutr. 1992;122(5):1111–8.

    Article  CAS  PubMed  Google Scholar 

  122. Thiele JJ, Friesleben HJ, Fuchs J, Ochsendorf FR. Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Hum Reprod. 1995;10(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  123. Song GJ, Norkus EP, Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl. 2006;29(6):569–75.

    Article  CAS  PubMed  Google Scholar 

  124. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12.

    Article  CAS  PubMed  Google Scholar 

  125. Alahmar AT, Sengupta P. Impact of coenzyme Q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol Trace Elem Res. 2021;199(4):1246–52.

    Article  CAS  PubMed  Google Scholar 

  126. Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S. Coenzyme Q10, oxidative stress, and male infertility: a review. Clin Exp Reprod Med. 2021;48(2):97.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Alahmar AT, Sengupta P, Dutta S, Calogero AE. Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin Exp Reprod Med. 2021;48(2):150.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Alahmar AT, Calogero AE, Sengupta P, Dutta S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Men’s Health. 2021;39(2):346.

    Article  Google Scholar 

  129. Mancini A, Conte G, Milardi D, De Marinis L, Littarru GP. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia. 1998;30(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  130. Atig F, Raffa M, Ali HB, Abdelhamid K, Saad A, Ajina M. Altered antioxidant status and increased lipid per-oxidation in seminal plasma of tunisian infertile men. Int J Biol Sci. 2012;8(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  131. Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: Is it justified? Indian J Urol. 2011;27(1):74–85.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.

    CAS  PubMed  Google Scholar 

  133. Wroblewski N, Schill WB, Henkel R. Metal chelators change the human sperm motility pattern. Fertil Steril. 2003;79(Suppl 3):1584–9.

    Article  PubMed  Google Scholar 

  134. Donnelly ET, McClure N, Lewis SE. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril. 1999;72(3):484–95.

    Article  CAS  PubMed  Google Scholar 

  135. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  136. Meseguer M, Garrido N, Martínez-Conejero JA, Simón C, Pellicer A, Remohí J. Role of cholesterol, calcium, and mitochondrial activity in the susceptibility for cryodamage after a cycle of freezing and thawing. Fertil Steril. 2004;81(3):588–94.

    Article  CAS  PubMed  Google Scholar 

  137. Park NC, Park HJ, Lee KM, Shin DG. Free radical scavenger effect of rebamipide in sperm processing and cryopreservation. Asian J Androl. 2003;5(3):195–201.

    CAS  PubMed  Google Scholar 

  138. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–73.e10.

    Article  CAS  PubMed  Google Scholar 

  139. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161(6):1831–4.

    Article  CAS  PubMed  Google Scholar 

  140. Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril. 2019;111(5):842–50.

    Article  PubMed  Google Scholar 

  141. Araujo TF, Friedrich C, Grangeiro CHP, Martelli LR, Grzesiuk JD, Emich J, et al. Sequence analysis of 37 candidate genes for male infertility: challenges in variant assessment and validating genes. Andrology. 2020;8(2):434–41.

    Article  CAS  PubMed  Google Scholar 

  142. Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20(11):1365–73.

    Article  CAS  PubMed  Google Scholar 

  143. Jafarzadeh N, Mani-Varnosfaderani A, Minai-Tehrani A, Savadi-Shiraz E, Sadeghi MR, Gilany K. Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev. 2015;82(3):150.

    Article  CAS  PubMed  Google Scholar 

  144. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, et al. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet. 2019;36(2):241–53.

    Article  PubMed  Google Scholar 

  145. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Sengupta P, Dutta S, et al. Oxidative stress-induced alterations in seminal plasma antioxidants: is there any association with keap1 gene methylation in human spermatozoa? Andrologia. 2019;51(1):e13159.

    Article  PubMed  CAS  Google Scholar 

  146. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.

    Article  CAS  PubMed  Google Scholar 

  147. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al. Aberrant upregulation of compensatory redox molecular machines may contribute to sperm dysfunction in infertile men with unilateral varicocele: a proteomic insight. Antioxid Redox Signal. 2020;32(8):504–21.

    Article  CAS  PubMed  Google Scholar 

  148. Alvarez Sedó C, Rawe VY, Chemes HE. Acrosomal biogenesis in human globozoospermia: immunocytochemical, ultrastructural and proteomic studies. Hum Reprod. 2012;27(7):1912–21.

    Article  PubMed  CAS  Google Scholar 

  149. Panner Selvam MK, Agarwal A, Pushparaj PN. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Andrology. 2019;7(4):454–62.

    CAS  PubMed  Google Scholar 

  150. Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J Int Med. 2016;279(3):229–40.

    Article  CAS  Google Scholar 

  151. Chu KY, Nassau DE, Arora H, Lokeshwar SD, Madhusoodanan V, Ramasamy R. Artificial intelligence in reproductive urology. Curr Urol Rep. 2019;20(9):52.

    Article  PubMed  Google Scholar 

  152. Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod. 2018;33(2):188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pourmoghadam Z, Aghebati-Maleki L, Motalebnezhad M, Yousefi B, Yousefi M. Current approaches for the treatment of male infertility with stem cell therapy. J Cell Physiol. 2018;233(10):6455–69.

    Article  CAS  PubMed  Google Scholar 

  154. Neuhaus N, Schlatt S. Stem cell-based options to preserve male fertility. Science. 2019;363(6433):1283–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, P., Roychoudhury, S., Nath, M., Dutta, S. (2022). Oxidative Stress and Idiopathic Male Infertility. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_9

Download citation

Publish with us

Policies and ethics