Skip to main content

Advertisement

Log in

The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol Hum Reprod. 2014;20(1):15–30.

    Article  PubMed  CAS  Google Scholar 

  2. Doksani Y. The response to DNA damage at telomeric repeats and ıts consequences for telomere function. Genes (Basel). 2019;10(4):318.

  3. Longhese MP. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 2008;22(2):125–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Doksani Y, de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol. 2014;6(12):a016576.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tire B, Ozturk S. Potential effects of assisted reproductive technology on telomere length and telomerase activity in human oocytes and early embryos. J Ovarian Res. 2023;16(1):130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci. 2020;10:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kent T, Clynes D. Alternative lengthening of telomeres: lessons to be learned from telomeric DNA double-strand break repair. Genes (Basel). 2021;12(11):1734.

  9. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45.

    Article  PubMed  CAS  Google Scholar 

  10. Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertilitydagger. Biol Reprod. 2019;100(2):318–30.

    Article  PubMed  Google Scholar 

  11. Zhang Q, Kim NK, Feigon J. Architecture of human telomerase RNA. Proc Natl Acad Sci U S A. 2011;108(51):20325–32.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wyatt HD, West SC, Beattie TL. InTERTpreting telomerase structure and function. Nucleic Acids Res. 2010;38(17):5609–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Armstrong L, et al. mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech Dev. 2000;97(1-2):109–16.

    Article  PubMed  CAS  Google Scholar 

  14. Liu L, et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9(12):1436–41.

    Article  PubMed  CAS  Google Scholar 

  15. Heaphy CM, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.

    Article  PubMed  CAS  Google Scholar 

  17. Mao P, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Fasching CL, et al. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res. 2007;67(15):7072–7.

    Article  PubMed  CAS  Google Scholar 

  19. Azzalin CM, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798–801.

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod. 2019;100(2):305–17.

    PubMed  Google Scholar 

  21. Kordowitzki P, et al. Dynamics of telomeric repeat-containing RNA expression in early embryonic cleavage stages with regards to maternal age. Aging (Albany NY). 2020;12(16):15906–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ozturk S. Telomerase activity and telomere length in male germ cells. Biol Reprod. 2015;92(2):53.

    Article  PubMed  Google Scholar 

  23. Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst). 2022;118:103386.

    Article  PubMed  CAS  Google Scholar 

  24. Antunes DM, et al. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet. 2015;32(11):1685–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stindl R. The paradox of longer sperm telomeres in older men’s testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet. 2016;9:12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10.

    Article  PubMed  Google Scholar 

  27. Imran SAM, et al. The ıntra- and extra-telomeric role of TRF2 in the DNA damage response. Int J Mol Sci. 2021;22(18):9900.

  28. Doksani Y, et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 2013;155(2):345–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Feuerhahn S, et al. No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci. 2015;40(5):275–85.

    Article  PubMed  CAS  Google Scholar 

  30. Ruis P, Boulton SJ. The end protection problem-an unexpected twist in the tail. Genes Dev. 2021;35(1-2):1–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol. 2005;7(7):712–8.

    Article  PubMed  CAS  Google Scholar 

  32. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92(3):401–13.

    Article  PubMed  Google Scholar 

  33. Karlseder J, et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283(5406):1321–5.

    Article  PubMed  CAS  Google Scholar 

  34. Lin J, Epel E. Stress and telomere shortening: ınsights from cellular mechanisms. Ageing Res Rev. 2022;73:101507.

    Article  PubMed  CAS  Google Scholar 

  35. Buscemi G, et al. The shelterin protein TRF2 inhibits Chk2 activity at telomeres in the absence of DNA damage. Curr Biol. 2009;19(10):874–9.

    Article  PubMed  CAS  Google Scholar 

  36. Sfeir A, et al. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science. 2010;327(5973):1657–61.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  37. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.

    Article  PubMed  Google Scholar 

  38. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068–71.

    Article  ADS  PubMed  CAS  Google Scholar 

  39. Wu L, et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 2006;126(1):49–62.

    Article  PubMed  CAS  Google Scholar 

  40. Yang Q, Zheng YL, Harris CC. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol. 2005;25(3):1070–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Uysal F, et al. Decreased expression of TERT and telomeric proteins as human ovaries age may cause telomere shortening. J Assist Reprod Genet. 2021;38(2):429–41.

    Article  PubMed  Google Scholar 

  42. Pirzada RH, et al. Role of TRF2 and TPP1 regulation in idiopathic recurrent pregnancy loss. Int J Biol Macromol. 2019;127:306–10.

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama H, et al. Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res. 2004;32(8):2556–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Doksani Y, de Lange T. Telomere-ınternal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep. 2016;17(6):1646–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 2016;32(9):566–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kazda A, et al. Chromosome end protection by blunt-ended telomeres. Genes Dev. 2012;26(15):1703–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.

    Article  PubMed  CAS  Google Scholar 

  48. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scully R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol. 2003;4(6):435–45.

    Article  PubMed  CAS  Google Scholar 

  51. Henson JD, et al. Alternative lengthening of telomeres in mammalian cells. Oncogene. 2002;21(4):598–610.

    Article  PubMed  CAS  Google Scholar 

  52. Britton S, Coates J, Jackson SP. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol. 2013;202(3):579–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yue X, et al. DNA-PKcs: a multi-faceted player in DNA damage response. Front Genet. 2020;11:607428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell. 1993;72(1):131–42.

    Article  PubMed  CAS  Google Scholar 

  55. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.

    Article  PubMed  CAS  Google Scholar 

  56. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sfeir A, Symington LS. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci. 2015;40(11):701–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chang HHY, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhu Z, et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008;134(6):981–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Garcia-Rodriguez A, et al. DNA damage and repair in human reproductive cells. Int J Mol Sci. 2018;20(1):31.

  61. Musson R, et al. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update. 2022;28(3):376–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Martin JH, et al. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update. 2019;25(2):180–201.

    Article  PubMed  Google Scholar 

  63. Hajkova P, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1-2):15–23.

    Article  PubMed  CAS  Google Scholar 

  64. Marangos P, Carroll J. Oocytes progress beyond prophase in the presence of DNA damage. Curr Biol. 2012;22(11):989–94.

    Article  PubMed  CAS  Google Scholar 

  65. Zeng F, Baldwin DA, Schultz RM. Transcript profiling during preimplantation mouse development. Dev Biol. 2004;272(2):483–96.

    Article  PubMed  CAS  Google Scholar 

  66. Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol. 2023;11:1127440.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jaroudi S, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24(10):2649–55.

    Article  PubMed  CAS  Google Scholar 

  68. Veitia RA. Primary ovarian insufficiency, meiosis and DNA repair. Biomed J. 2020;43(2):115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huang C, Guo T, Qin Y. Meiotic recombination defects and premature ovarian ınsufficiency. Front Cell Dev Biol. 2021;9:652407.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Butts S, et al. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab. 2009;94(12):4835–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Toupance S, et al. Ovarian telomerase and female fertility. Biomedicines. 2021;9:7.

    Article  Google Scholar 

  72. Fattet AJ, et al. Telomere length in granulosa cells and leukocytes: a potential marker of female fertility? A systematic review of the literature. J Ovarian Res. 2020;13(1):96.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dinger Y, et al. DNA damage, DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome. Scand J Clin Lab Invest. 2005;65(8):721–8.

    Article  PubMed  CAS  Google Scholar 

  74. Pedroso DCC, et al. Telomere length and telomerase activity in ımmature oocytes and cumulus cells of women with polycystic ovary syndrome. Reprod Sci. 2020;27(6):1293–303.

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  75. Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6(1):84–96.

    Article  PubMed  Google Scholar 

  76. Derijck A, et al. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17(13):1922–37.

    Article  PubMed  CAS  Google Scholar 

  77. Treff NR, et al. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Goedecke W, et al. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet. 1999;23(2):194–8.

    Article  PubMed  CAS  Google Scholar 

  79. Gouraud A, et al. “Breaking news” from spermatids. Basic Clin Androl. 2013;23:11.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ahmed EA, Scherthan H, de Rooij DG. DNA double strand break response and limited repair capacity in mouse elongated spermatids. Int J Mol Sci. 2015;16(12):29923–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ahmed EA, et al. Ku70 and non-homologous end joining protect testicular cells from DNA damage. J Cell Sci. 2013;126(Pt 14):3095–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ahmed EA, Rosemann M, Scherthan H. NHEJ contributes to the fast repair of radiation-induced DNA double-strand breaks at late prophase I telomeres. Health Phys. 2018;115(1):102–7.

    Article  PubMed  CAS  Google Scholar 

  83. Siderakis M, Tarsounas M. Telomere regulation and function during meiosis. Chromosome Res. 2007;15(5):667–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Roig I, et al. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma. 2004;113(1):22–33.

    Article  PubMed  CAS  Google Scholar 

  85. Badie S, et al. BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol. 2010;17(12):1461–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rosen EM. BRCA1 in the DNA damage response and at telomeres. Front Genet. 2013;4:85.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Titus S, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jaco I, et al. Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol. 2003;23(16):5572–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tarsounas M, et al. Telomere maintenance requires the RAD51D recombination/repair protein. Cell. 2004;117(3):337–47.

    Article  PubMed  CAS  Google Scholar 

  90. Espejel S, et al. Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol. 2004;167(4):627–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li H, et al. Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol. 2007;27(23):8205–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Iyama T, Wilson DM 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 2013;12(8):620–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev. 2006;106(2):253–76.

    Article  PubMed  CAS  Google Scholar 

  94. Petruseva IO, Evdokimov AN, Lavrik OI. Molecular mechanism of global genome nucleotide excision repair. Acta Naturae. 2014;6(1):23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wienholz F, Vermeulen W, Marteijn JA. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair. Nucleic Acids Res. 2017;45(9):e68.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Menezo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.

    Article  PubMed  CAS  Google Scholar 

  97. Wang S, et al. Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci U S A. 2010;107(41):17639–44.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–19.

    Article  PubMed  CAS  Google Scholar 

  99. Zhu XD, et al. ERCC1/XPF removes the 3’ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell. 2003;12(6):1489–98.

    Article  PubMed  CAS  Google Scholar 

  100. de Lange T. Telomere biology and DNA repair: enemies with benefits. FEBS Lett. 2010;584(17):3673–4.

    Article  PubMed  Google Scholar 

  101. Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet. 2010;6(4):e1000926.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci U S A. 1995;92(1):258–62.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  103. Fouquerel E, Opresko PL. Convergence of The nobel fields of telomere biology and DNA repair. Photochem Photobiol. 2017;93(1):229–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wu Y, Mitchell TR, Zhu XD. Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms. Mech Ageing Dev. 2008;129(10):602–10.

    Article  PubMed  CAS  Google Scholar 

  105. Ting AP, et al. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress. J Cell Mol Med. 2010;14(1-2):403–16.

    Article  PubMed  CAS  Google Scholar 

  106. Gopalakrishnan K, et al. Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells. Genome Integr. 2010;1(1):16.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Stout GJ, Blasco MA. Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res. 2013;73(6):1844–54.

    Article  PubMed  CAS  Google Scholar 

  108. Batenburg NL, et al. Cockayne syndrome group B protein interacts with TRF2 and regulates telomere length and stability. Nucleic Acids Res. 2012;40(19):9661–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tan J, et al. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. 2020;48(3):1285–300.

    Article  PubMed  CAS  Google Scholar 

  110. Hagelstrom RT, et al. Hyper telomere recombination accelerates replicative senescence and may promote premature aging. Proc Natl Acad Sci U S A. 2010;107(36):15768–73.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wallace SS. Base excision repair: a critical player in many games. DNA Repair (Amst). 2014;19:14–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kim YJ, Wilson DM 3rd. Overview of base excision repair biochemistry. Curr Mol Pharmacol. 2012;5(1):3–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schormann N, Ricciardi R, Chattopadhyay DJPs. Uracil-DNA glycosylases—structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci. 2014;23(12):1667–85.

  114. Otterlei M, et al. Post-replicative base excision repair in replication foci. EMBO J. 1999;18(13):3834–44.

  115. Hegde ML, et al. Physical and functional interaction between human oxidized base-specific DNA glycosylase NEIL1 and flap endonuclease 1. J Biol Chem. 2008;283(40):27028–37.

  116. Krokan HE, Bjoras M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012583.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Svilar D, et al. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. 2011;14(12):2491–507.

    CAS  Google Scholar 

  118. Jia P, Her C, Chai W. DNA excision repair at telomeres. DNA Repair (Amst). 2015;36:137–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.

    Article  Google Scholar 

  120. Saretzki G, Von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci. 2002;959:24–9.

    Article  ADS  PubMed  CAS  Google Scholar 

  121. Kordowitzki P. Oxidative stress induces telomere dysfunction and shortening in human oocytes of advanced age donors. Cells. 2021;10(8):1866.

  122. Oikawa S, Tada-Oikawa S, Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry. 2001;40(15):4763–8.

    Article  PubMed  CAS  Google Scholar 

  123. Opresko PL, et al. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell. 2004;14(6):763–74.

    Article  PubMed  CAS  Google Scholar 

  124. Fouquerel E, et al. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol Cell. 2019;75(1):117–130 e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wang Z, et al. Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet. 2010;6(5):e1000951.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rhee DB, et al. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair (Amst). 2011;10(1):34–44.

    Article  PubMed  CAS  Google Scholar 

  127. Vallabhaneni H, et al. Defective repair of uracil causes telomere defects in mouse hematopoietic cells. J Biol Chem. 2015;290(9):5502–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Benoff S, et al. Cadmium concentrations in blood and seminal plasma: correlations with sperm number and motility in three male populations (infertility patients, artificial insemination donors, and unselected volunteers). Mol Med. 2009;15(7-8):248–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Vallabhaneni H, et al. Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genet. 2013;9(7):e1003639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Dejardin J, Kingston RE. Purification of proteins associated with specific genomic loci. Cell. 2009;136(1):175–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lee OH, et al. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics. 2011;10(2):M110 001628.

    Article  PubMed  Google Scholar 

  132. Madlener S, et al. Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance. Proc Natl Acad Sci U S A. 2013;110(44):17844–9.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  133. Opresko PL, et al. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res. 2005;33(4):1230–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Li M, et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018;46(11):5664–77.

    Article  MathSciNet  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012633.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ioannou D, et al. Impact of sperm DNA chromatin in the clinic. J Assist Reprod Genet. 2016;33(2):157–66.

    Article  MathSciNet  PubMed  Google Scholar 

  137. Amaral-Silva GK, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46(4):241–5.

    Article  PubMed  Google Scholar 

  138. Martin-Lopez JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer. 2013;12(2):159–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Brown MW, et al. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun. 2016;7:10607.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  140. Pecina-Slaus N, et al. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Siegl-Cachedenier I, et al. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 2007;21(17):2234–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Basheva EA, Bidau CJ, Borodin PM. General pattern of meiotic recombination in male dogs estimated by MLH1 and RAD51 immunolocalization. Chromosome Res. 2008;16(5):709–19.

    Article  PubMed  CAS  Google Scholar 

  143. Segui N, et al. Telomere length and genetic anticipation in Lynch syndrome. PLoS One. 2013;8(4):e61286.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  144. Mendez-Bermudez A, Royle NJ. Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells. Hum Mutat. 2011;32(8):939–46.

    Article  PubMed  CAS  Google Scholar 

  145. Rampazzo E, et al. Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer. 2010;102(8):1300–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Campbell MR, et al. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect. Oncogene. 2006;25(17):2531–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SO, BT, and GT designed the study. BT and GT wrote the manuscript and created all the figures. SO critically read and revised the manuscript.

Corresponding author

Correspondence to Saffet Ozturk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Betul Tire and Gunel Talibova contributed to the manuscript equally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tire, B., Talibova, G. & Ozturk, S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 41, 277–291 (2024). https://doi.org/10.1007/s10815-023-03008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-03008-2

Keywords

Navigation