Skip to main content
Log in

Culture conditions in the IVF laboratory: state of the ART and possible new directions

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

In the last four decades, the assisted reproductive technology (ART) field has witnessed advances, resulting in improving pregnancy rates and diminishing complications, in particular reduced incidence of multiple births. These improvements are secondary to advanced knowledge on embryonic physiology and metabolism, resulting in the ability to design new and improved culture conditions. Indeed, the incubator represents only a surrogate of the oviduct and uterus, and the culture conditions are only imitating the physiological environment of the female reproductive tract. In vivo, the embryo travels through a dynamic and changing environment from the oviduct to the uterus, while in vitro, the embryo is cultured in a static fashion. Importantly, while culture media play a critical role in optimising embryo development, a large host of additional factors are equally important. Additional potential variables, including but not limited to pH, temperature, osmolality, gas concentrations and light exposure need to be carefully controlled to prevent stress and permit optimal implantation potential. This manuscript will provide an overview of how different current culture conditions may affect oocyte and embryo viability with particular focus on human literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data are available.

References

  1. Bigger JD. Thoughts on embryo culture conditions. Reprod Biomed Online. 2001;4:30–8.

    Article  Google Scholar 

  2. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Repod Update. 1997;3:367–82.

    Article  CAS  Google Scholar 

  3. Fouks Y, Yogev Y. Twinning in ART: single embryo transfer policy. Best Pract Res Clin Obstet Gynaecol. 2022;84:88–95. https://doi.org/10.1016/j.bpobgyn.2022.03.010.

    Article  PubMed  Google Scholar 

  4. De Neubourg D, Dancet EAF, Pinborg A. Single-embryo transfer implies quality of care in reproductive medicine. Reprod Biomed Online. 2022;45(5):899–905. https://doi.org/10.1016/j.rbmo.2022.04.001.

    Article  PubMed  Google Scholar 

  5. Abe K, Schauer T, Torres-Padilla ME. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep. 2022;41(13):111865. https://doi.org/10.1016/j.celrep.2022.111865.

    Article  CAS  PubMed  Google Scholar 

  6. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  CAS  PubMed  Google Scholar 

  7. Leese HJ. Formation and function of oviduct fluid. J Reprod Fertil. 1988;82:843–56.

    Article  CAS  PubMed  Google Scholar 

  8. Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234:231–6.

    Article  CAS  PubMed  Google Scholar 

  9. Baltz JM, Smith SS, Biggers JD, Lechene C. Intracellular ion concentrations and their maintenance by Na+/K(+)-ATPase in preimplantation mouse embryos. Zygote. 1997;5(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Troncoso C, Bosch E, Rubio C, Remohí J, Simón C, Pellicer A. The origin of biochemical pregnancies: lessons learned from preimplantation genetic diagnosis. Fertil Steril. 2003;79:449–50.

    Article  PubMed  Google Scholar 

  11. Quinn P, Kerin J, Warnes G. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44:493–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–53.

    Article  CAS  PubMed  Google Scholar 

  13. Sciorio R, Meseguer M. Focus on time-lapse analysis: blastocyst collapse and morphometric assessment as new features of embryo viability. Reprod Biomed Online. 2021;43(5):821–32.

    Article  PubMed  Google Scholar 

  14. Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod. 2022;106(2):274–90.

    Article  PubMed  Google Scholar 

  15. Sciorio R, Campos G, Palini S, Baldini D, Janssens R. Real-time image and time-lapse technology to select the single blastocyst to transfer in assisted reproductive cycles. Zygote. 2023:1–10. https://doi.org/10.1017/S0967199423000151.

  16. Sciorio R. Use of time-lapse monitoring in medically assisted reproduction treatments: a mini-review. Zygote. 2021;29(2):93–101.

    Article  PubMed  Google Scholar 

  17. Sciorio R, Thong JK, Pickering SJ. Comparison of the development of human embryos cultured in either an EmbryoScope or benchtop incubator. J Assist Reprod Genet. 2018;35(3):515–22.

    Article  CAS  PubMed  Google Scholar 

  18. Rock J, Menkin MF. In vitro fertilization and cleavage of human ovarian eggs. Science. 1944;100:105–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ruffenach SC. Landrum Brewer Shettles (1909-2003). In: Embryo Project Encyclopedia (2009-07-22). http://embryo.asu.edu/handle/10776/1958.

  20. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet (London, England). 1978;2:366.

    Article  CAS  PubMed  Google Scholar 

  21. Steptoe PC, Edwards RG. Laparoscopic recovery of preovulatory human oocytes after priming of ovaries with gonadotrophins. Lancet (London, England). 1970;1:683–9.

    Article  CAS  PubMed  Google Scholar 

  22. Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221:632–5.

    Article  CAS  PubMed  Google Scholar 

  23. Edwards RG. Test-tube babies. Nature. 1981;293:253–6.

    Article  CAS  PubMed  Google Scholar 

  24. Edwards RG, Purdy JM, Steptoe PC, et al. The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol. 1981;141:408–16.

    Article  CAS  PubMed  Google Scholar 

  25. Menezo Y, Testart J, Perone D. Serum is not necessary in human in vitro fertilization and embryo development. Fertil Steril. 1984;42:750–5.

    Article  CAS  PubMed  Google Scholar 

  26. Lawitt JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31:189–94.

    Article  Google Scholar 

  27. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  CAS  PubMed  Google Scholar 

  28. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    Article  PubMed  Google Scholar 

  29. Morbeck DE, Krisher RL, Herrick JR, Baumann NA, Matern D, Moyer T. Composition of commercial media used for human embryo culture. Fertil Steril. 2014;102:759–66.e9.

    Article  CAS  PubMed  Google Scholar 

  30. Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev. 2015;27(4):638–54. https://doi.org/10.1071/RD14421.

  31. Balaban B, Urman B. Comparison of two sequential media for culturing cleavage-stage embryos and blastocysts: embryo characteristics and clinical outcome. Reprod Biomed Online. 2005;10:485–91.

    Article  PubMed  Google Scholar 

  32. Mantikou E, Youssef MA, van Wely M, van der Veen F, Al-Inany HG, Repping S, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update. 2013;19:210–20.

    Article  CAS  PubMed  Google Scholar 

  33. Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92:1783–6.

    Article  PubMed  Google Scholar 

  34. Summers MC, Bird S, Mirzai FM, Thornhill A, Biggers JD. Human preimplantation embryo development in vitro: a morphological assessment of sibling zygotes cultured in a single medium or in sequential media. Hum Fertil (Camb). 2013;16:278–85.

    Article  PubMed  Google Scholar 

  35. Pool TB, Schoolfield J, Han D. Human embryo culture media comparisons. Methods Mol Biol. 2012;912:367–86.

    Article  CAS  PubMed  Google Scholar 

  36. Campo R, Binda MM, Van Kerkhoven G, Frederickx V, Serneels A, Roziers P, et al. Critical reappraisal of embryo quality as a predictive parameter for pregnancy outcome: a pilot study. Facts Views Vision ObGyn. 2010;2:289–95.

    CAS  Google Scholar 

  37. Nelissen EC, Van Montfoort AP, Coonen E, Derhaag JG, Geraedts JP, Smits LJ, et al. Further evidence that culture media affect perinatal outcome: findings after transfer of fresh and cryopreserved embryos. Hum Reprod. 2012;27:1966–76.

    Article  PubMed  Google Scholar 

  38. Youssef MA, Mantikou E, van Wely M, Van der Veen F, Al-Inany HG, Repping S, et al. Culture media for human pre-implantation embryos in assisted reproductive technology cycles. Cochrane Database Syst Rev. 2015;(11):CD007876. https://doi.org/10.1002/14651858.CD007876.pub2.

  39. Biggers JD, McGinnis LK, Raffin M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod. 2000;63:281–93.

    Article  CAS  PubMed  Google Scholar 

  40. Krisher RL, Schlenker T. Culture of human preimplantation embryos in a clinical ART setting. Methods Mol Biol. 2019;2006:355–71. https://doi.org/10.1007/978-1-4939-9566-0_24.

    Article  CAS  PubMed  Google Scholar 

  41. Wale PL, Gardner DK. Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol Reprod. 2013;89:75.

    Article  PubMed  Google Scholar 

  42. Cassuto G, Chavrier M, Menezo Y. Culture conditions and not prolonged culture time are responsible for monozygotic twinning in human in vitro fertilization. Fertil Steril. 2003;80:462–3.

    Article  PubMed  Google Scholar 

  43. Menezo Y, Lichtblau I, Elder K. Newinsights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet. 2013;30:293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Clare CE, Pestinger V, Kwong WY, Tutt DAR, Xu J, Byrne HM, Barrett DA, Emes RA, Sinclair KD. Interspecific variation in one-carbon metabolism within the ovarian follicle, oocyte, and preimplantation embryo: consequences for epigenetic programming of DNA methylation. Int J Mol Sci. 2021;22(4):1838. https://doi.org/10.3390/ijms22041838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-Lglutamine. Hum Reprod. 2005;20:1364–71.

    Article  CAS  PubMed  Google Scholar 

  46. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69:1109–17.

    Article  CAS  PubMed  Google Scholar 

  47. Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet. 1995;12:354–60.

    Article  CAS  PubMed  Google Scholar 

  48. Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization– embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61:714–9.

    Article  CAS  PubMed  Google Scholar 

  49. Meintjes M, Chantilis SJ, Ward DC, Douglas JD, Rodriguez AJ, Guerami AR. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24:782–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tay JI, Rutherford AJ, Killick SR, Maguiness SD, Partridge RJ, Leese HJ. Human tubal fluid: production, nutrient composition and response to adrenergic agents. Hum Reprod. 1997;12(11):2451–6. https://doi.org/10.1093/humrep/12.11.2451.

    Article  CAS  PubMed  Google Scholar 

  51. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20:9–18.

    Article  PubMed  Google Scholar 

  52. Morbeck DE, Baumann NA, Oglesbee D. Composition of single-step media used for human embryo culture. Fertil Steril. 2017;107:1055–60.

    Article  PubMed  Google Scholar 

  53. Fredrickson J, Krisher R, Morbeck DE. The impact of the protein stabilizer octanoic acid on embryonic development and fetal growth in a murine model. J Assist Reprod Genet. 2015;32:1517–24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Salamonsen LA, Shuster S, Stern R. Distribution of hyaluronan in human endometrium across the menstrual cycle. Implications for implantation and menstruation. Cell Tissue Res. 2001;306:335–40.

    Article  CAS  PubMed  Google Scholar 

  55. Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993;7:1233–41.

    Article  CAS  PubMed  Google Scholar 

  56. Campbell S, Swann HR, Aplin JD, Seif MW, Kimber SJ, Elstein M. CD44 is expressed throughout pre-implantation human embryo development. Hum Reprod. 1995;10:425–30.

    Article  CAS  PubMed  Google Scholar 

  57. Urman B, Yakin K, Ata B, Isiklar A, Balaban B. Effect of hyaluronan-enriched transfer medium on implantation and pregnancy rates after day 3 and day 5 embryo transfers: a prospective randomized study. Fertil Steril. 2008;90(3):604–12. https://doi.org/10.1016/j.fertnstert.2007.07.1294.

    Article  PubMed  Google Scholar 

  58. Bontekoe S, Heineman MJ, Johnson N, Blake D. Adherence compounds in embryo transfer media for assisted reproductive technologies. Cochrane Database Syst Rev. 2014;(2):CD007421. https://doi.org/10.1002/14651858.CD007421.pub3.

  59. Pock T, Schulte K, Schlatt S, Boiani M, Nordhoff V. GM-CSF perturbs cell identity in mouse pre-implantation embryos. PloS One. 2022;17(2):e0263793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adanacıoglu F, Çetin C, Tokat G, Adanacıoglu D, Karasu AFG, Çetin MT. Comparison of the effects of GMCSF-containing and traditional culture media on embryo development and pregnancy success rates. Rev Bras Ginecol Obstet. 2022;44(11):1047–51. https://doi.org/10.1055/s-0042-1759630.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Armstrong S, MacKenzie J, Woodward B, Pacey A, Farquhar C. GM-CSF (granulocyte macrophage colony-stimulating factor) supplementation in culture media for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2020;7(7):CD013497.

    PubMed  Google Scholar 

  62. Okabe-Kinoshita M, Kobayashi T, Shioya M, Sugiura T, Fujita M, Takahashi K. Granulocyte-macrophage colony-stimulating factor-containing medium treatment after thawing improves blastocyst-transfer outcomes in the frozen- thawed blastocyst-transfer cycle. J Assist Reprod Genet. 2022;39(6):1373–81. https://doi.org/10.1007/s10815-022-02493-1.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Siristatidis C, Vogiatzi P, Salamalekis G, Creatsa M, Vrachnis N, Glujovsky D, Iliodromiti Z, Chrelias C. Granulocyte macrophage colony stimulating factor supplementation in culture media for subfertile women undergoing assisted reproduction technologies: a systematic review. Int J Endocrinol. 2013;2013:704967. https://doi.org/10.1155/2013/704967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I, Aasted M, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colonystimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil Steril. 2013;99:1600–9.

    Article  CAS  PubMed  Google Scholar 

  65. Chen P, Huang C, Sun Q, Zhong H, et al. Granulocyte-macrophage colony stimulating factor in single blastocyst conditioned medium as a biomarker for predicting implantation outcome of embryo. Front Immunol. 2021 Jun;30(12):679839. https://doi.org/10.3389/fimmu.2021.679839.

    Article  CAS  Google Scholar 

  66. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil Nov. 1993;99(2):673–9.

    Article  CAS  Google Scholar 

  67. Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update. 2018;24(1):15–34. https://doi.org/10.1093/humupd/dmx028.

    Article  PubMed  Google Scholar 

  68. Sciorio R, Smith GD. Embryo culture at a reduced oxygen concentration of 5%: a mini review. Zygote. 2019;27(6):355–61.

    Article  CAS  PubMed  Google Scholar 

  69. Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15(Suppl 2):199–206.

    Article  PubMed  Google Scholar 

  70. Waldenström U, Engström AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.

    Article  PubMed  Google Scholar 

  71. Meintjes M, Chantilis SJ, Douglas JD, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.

    Article  PubMed  Google Scholar 

  72. Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fertil Dev. 2005;17:361–70.

    Article  PubMed  Google Scholar 

  73. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86(4 Suppl):1252–65.

    CAS  PubMed  Google Scholar 

  74. Kovacic B, Vlaisavljević V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17(2):229–36. https://doi.org/10.1016/s1472-6483(10)60199-x.

  75. Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, et al. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30(8):1073–9. https://doi.org/10.1007/s10815-013-0032-z.

  76. Sciorio R, El Hajj N. Epigenetic risks of medically assisted reproduction. J Clin Med. 2022;11(8):2151. https://doi.org/10.3390/jcm11082151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cajas YN, Cañón-Beltrán K, Ladrón de Guevara M, Millán de la Blanca MG, Ramos-Ibeas P, Gutiérrez-Adán A, Rizos D, González EM. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality. Int J Mol Sci. 2020;21(15):–5340. https://doi.org/10.3390/ijms21155340.

  78. Li W, Goossens K, Van Poucke M, Foreir K, Braeckmans K, Van Soom A, Peelman LJ. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod Fertil Dev. 2014;28(7):948–59.

    Article  Google Scholar 

  79. Bradley J, Swann K. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int J Dev Biol. 2019;63(3-5):93–103. https://doi.org/10.1387/ijdb.180355ks.

    Article  CAS  PubMed  Google Scholar 

  80. Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15–27. https://doi.org/10.1530/REP-13-0251.

    Article  CAS  PubMed  Google Scholar 

  81. van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.

    Article  CAS  PubMed  Google Scholar 

  82. Belli M, Zhang L, Liu X, Donjacour A, Ruggeri E, Palmerini MG, Nottola SA, Macchiarelli G, Rinaudo P. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum Reprod. 2019;34(4):601–11. https://doi.org/10.1093/humrep/dez011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gaspar RB, Arnold DR, Corrêa CAP, da Rocha CV Jr, et al. Oxygen tension affects histone remodeling of in vitro-produced embryos in a bovine model. Theriogenology. 2015;83(9):1408–15. https://doi.org/10.1016/j.theriogenology.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  84. Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905.

    Article  CAS  PubMed  Google Scholar 

  85. Rinaudo P, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction. 2004;128(3):301–11. https://doi.org/10.1530/rep.1.00297.

    Article  CAS  PubMed  Google Scholar 

  86. Feuer S, Liu X, Donjacour A, Simbulan R, Maltepe E, Rinaudo P. Common and specific transcriptional signatures in mouse embryos and adult tissues induced by in vitro procedures. Reproduction. 2016;31:REP-16-0473. https://doi.org/10.1530/REP-16-0473.

    Article  Google Scholar 

  87. Christianson MS, Zhao Y, Shoham G, Granot I, Safran A, Khafagy A, Leong M, Shoham Z. Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey. J Assist Reprod Genet. 2014;31:1029–36.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hong K, Forman E, Lee H, et al. Optimizing the temperature for embryo culture in IVF: a randomized controlled trial (RCT) comparing standard culture temperature of 37C to the reduced more physiologic temperature of 36C. Fertil Steril. 2012;98(3):s167.

    Article  Google Scholar 

  89. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gardner DK, Kuramoto T, Tanaka M, Mitzumoto S, Montag M, Yoshida A. Prospective randomized multicentre comparison on sibling oocytes comparing G-Series media system with antioxidants versus standard G-Series media system. Reprod Biomed Online. 2020;40(5):637–44. https://doi.org/10.1016/j.rbmo.2020.01.026.

    Article  CAS  PubMed  Google Scholar 

  91. Truong T, Harvey AJ, Gardner DK. Antioxidant supplementation of mouse embryo culture or vitrification media support more in-vivo-like gene expression post-transfer. Reprod Biomed Online. 2022;44(3):393–410. https://doi.org/10.1016/j.rbmo.2021.11.013.

    Article  CAS  PubMed  Google Scholar 

  92. Guerin P, El Mouatassim S, MenezoY. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89.

    Article  CAS  PubMed  Google Scholar 

  93. Abdelrazik H, Sharma R, Mahfouz R, Agarwal A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril. 2009;91:589–96.

    Article  CAS  PubMed  Google Scholar 

  94. Furnus CC, de Matos DG, Picco S, Garcia PP, Inda AM, Mattioli G, Errecalde AL. Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. J Anim Sci. 2008;109:88–99.

    CAS  Google Scholar 

  95. Hammond CL, Lee TK, Ballatori N. Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol. 2001;34:946–54.

    Article  CAS  PubMed  Google Scholar 

  96. Swain JE. Optimal human embryo culture. Semin Reprod Med. 2015;33(2):103–117. https://doi.org/10.1055/s-0035-1546423.

  97. Sun XF, Wang WH, Keefe DL. Overheating is detrimental to meiotic spindles within in vitro matured human oocytes. Zygote. 2004;12(1):65–70.

    Article  PubMed  Google Scholar 

  98. Wang WH, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77(6):1274–7.

    Article  PubMed  Google Scholar 

  99. Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 2015;282(13):2471–87.

    Article  PubMed  Google Scholar 

  100. Montag M, van der Ven H. Symposium: innovative techniques in human embryo viability assessment. Oocyte assessment and embryo viability prediction: birefringence imaging. Reprod Biomed Online. 2008;17(4):454–60.

    Article  CAS  PubMed  Google Scholar 

  101. Swearman H, Koustas G, Knight E, Liperis G, Grupen C, Sjoblom C. pH: the silent variable significantly impacting meiotic spindle assembly in mouse oocytes. Reprod Biomed Online. 2018 Sep;37(3):279–90.

    Article  CAS  PubMed  Google Scholar 

  102. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte **Supported by program grant PG 8302273 to P.R.B, and M.H.J, from the Medical Research Council of Great Britain, Cambridge, England. Fertil Steril. 1990;54:102–8.

    Article  CAS  PubMed  Google Scholar 

  103. Pollard JW, Martino A, Rumph ND, Songsasen N, Plante C, Leibo SP. Effect of ambient temperatures during oocyte recovery on in vitro production of bovine embryos. Theriogenology. 1996;46(5):849–58.

    Article  CAS  PubMed  Google Scholar 

  104. Vinales KL, Begaye B, Thearle MS, Krakoff J, Piaggi P. Core body temperature, energy expenditure, and epinephrine during fasting, eucaloric feeding, and overfeeding in healthy adult men: evidence for a ceiling effect for human thermogenic response to diet. Metabolism. 2019;94:59–68. https://doi.org/10.1016/j.metabol.2019.01.016.

  105. De Munck N, Janssens R, Santos-Ribeiro S, Tournaye H, Velde H, Verheyen G. The effect of different temperature conditions on human embryos in vitro: two sibling studies. Reprod Biomed Online. 2019;38(4):508–15.

    Article  Google Scholar 

  106. Fawzy M, Emad M, Gad MA, Sabry M, Kasem H, Mahmoud M, Bedaiwy MA. Comparing 36.5°C with 37°C for human embryo culture: a prospective randomized controlled trial. Reprod Biomed Online. 2018;36(6):620–6. https://doi.org/10.1016/j.rbmo.2018.03.011.

    Article  PubMed  Google Scholar 

  107. Lee SH, Liu X, Jimenez-Morales D, Rinaudo PF. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. Elife. 2022;15(11):e79153. https://doi.org/10.7554/eLife.79153.

    Article  Google Scholar 

  108. Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95(4):1291–4.

    Article  CAS  PubMed  Google Scholar 

  109. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810. https://doi.org/10.1016/s1472-6483(10)60029-6.

  110. Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571–87. https://doi.org/10.1016/j.fertnstert.2016.01.035.

  111. Swain JE, Cabrera L, Xu X, Smith GD. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development. Reprod Biomed Online. 2012;24(2):142–7. https://doi.org/10.1016/j.rbmo.2011.10.008.

  112. Nakayama T, Noda Y, Goto Y, Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology. 1994;41(2):499–510.

    Article  CAS  PubMed  Google Scholar 

  113. Baltz J, Shou C. Cell volume regulation in mammalian oocytes and preimplantation embryos. Mol Reprod Dev. 2012;79:821–31.

    Article  CAS  PubMed  Google Scholar 

  114. Brinster RL. Studies on the development of mouse embryos in vitro. The effect of osmolarity and hydrogen ion concentration. J Exp Zool. 1965;158:49–57.

    Article  CAS  PubMed  Google Scholar 

  115. Brinster RL. A Method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp Cell Res. 1963;32(1):205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elder K, Van den Bergh M, Woodward B. Troubleshooting and problem solving in the IVF laboratory. Cambridge: Press CU; 2015. 35–7

    Book  Google Scholar 

  117. Morbeck DE, Leonard PH. Culture systems: mineral oil overlay. Methods Mol Biol. 2012;912:325–31.

    Article  CAS  PubMed  Google Scholar 

  118. Erbach GT, Bhatnagar P, Baltz JM, Biggers JD. Zinc is a possible toxic contaminant of silicone oil in microdrop cultures of preimplantation mouse embryos. Hum Reprod. 1995;10:3248–54.

    Article  CAS  PubMed  Google Scholar 

  119. Morbeck DE, Khan Z, Barnidge DR, Walker DL. Washing mineral oil reduces contaminants and embryotoxicity. Fertil Steril. 2010;94(7):2747–52.

    Article  PubMed  Google Scholar 

  120. Mestres E, Matia-Algué Q, Villamar A, Casals A, Acacio M, García-Jiménez M, Martínez-Casado A, Castelló C, Calderón G, Costa-Borges N. Characterization and comparison of commercial oils used for human embryo culture. Hum Reprod. 2022;37(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  121. Ainsworth AJ, Fredrickson JR, Morbeck DE. Improved detection of mineral oil toxicity using an extended mouse embryo assay. J Assist Reprod Genet. 2017;34(3):391–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hughes PM, Morbeck DE, Hudson SB, Fredrickson JR, Walker DL, Coddington CC. Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Genet. 2010;27(2-3):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mortimer D, Mortimer ST, editors. Quality and risk management in the IVF Laboratory. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  124. Ray BD, Mcdermott A, Wardle PG, Corrigan E, Mitchell EA, McLaughlin EA, et al. In vitro fertilization: fertilization failure due to toxic catheters. J In Vitro Fert Embryo Transf. 1984;4:58–61.

    Article  Google Scholar 

  125. Nijs M, Franssen K, Cox A, Wissmann D, Ruis H, Ombelet W. Reprotoxicity of intrauterine insemination and in vitro fertilization-embryo transfer disposables and products: a 4-year survey. Fertil Steril. 2009;92(2):527–35.

    Article  PubMed  Google Scholar 

  126. Delaroche L, Oger P, Genauzeau E, Meicler P, Lamazou F, Dupont C, Humaidan P. Embryotoxicity testing of IVF disposables: how do manufacturers test? Hum Reprod. 2020;35(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  127. Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science (New York, NY). 2005;310:1139–43.

    Article  CAS  Google Scholar 

  128. Thie M, Röspel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW. Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod. 1998;13:3211–9.

    Article  CAS  PubMed  Google Scholar 

  129. Manoogian SJ, Bisplinghoff JA, McNally C, Kemper AR, Santago AC, Duma SM. Dynamic tensile properties of human placenta. J Biomech. 2008;41:3436–40.

    Article  PubMed  Google Scholar 

  130. Filas BA, Bayly PV, Taber LA. Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann Biomed Eng. 2011;39:443–54.

    Article  PubMed  Google Scholar 

  131. DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12:308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010;11:633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vogel V, Sheetz MP. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol. 2009;21:38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sun Y, Villa-Diaz LG, Lam RH, Chen W, Krebsbach PH, Fu J. Mechanics regulates fate decisions of human embryonic stem cells. PloS One. 2012;7:e37178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  136. Titushkin IA, Shin J, Cho M. A new perspective for stem-cell mechanobiology: biomechanical control of stem-cell behavior and fate. Crit Rev Biomed Eng. 2010;38:393–433.

    Article  PubMed  Google Scholar 

  137. Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol. 2009;10:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rivera RM, Rinaudo P. Bovine preimplantation embryo development is affected by the stiffness of the culture substrate. Mol Reprod Dev. 2013;80:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, Maltepe E, Rinaudo P. Effect of substrate stiffness on early mouse embryo development. PloS One. 2012;7:e41717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wheeler MB, Walters EM, Beebe DJ. Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology. 2007 Sep;1(68 Suppl 1):S178–89. https://doi.org/10.1016/j.theriogenology.2007.04.042.

    Article  Google Scholar 

  141. Gu W, Zhu X, Futai N, Cho B, Takayama S. Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS. 2004;101:15861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–50.

    Article  CAS  PubMed  Google Scholar 

  143. Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5:1229–32.

    Article  CAS  PubMed  Google Scholar 

  144. Mancini V, McKeegan PJ, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Picton HM, Pensabene V. Probing morphological, genetic and metabolomic changes of in vitro embryo development in a microfluidic device. Biotechnol Prog. 2021;37:e3194.

    Article  CAS  PubMed  Google Scholar 

  145. Matsuura K, Hayashi N, Kuroda Y, Takiue C, Hirata R, Takenami M, Aoi Y, Yoshioka N, Habara T, Mukaida T, Naruse K. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online. 2010;20:358–64.

    Article  PubMed  Google Scholar 

  146. Kushnir VA, Smith GD, Adashi EY. The future of IVF: the new normal in human reproduction. Reprod Sci. 2022;29(3):849–56.

    Article  PubMed  Google Scholar 

  147. Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod. 2017;23(4):235–47. https://doi.org/10.1093/molehr/gaw071.

    Article  CAS  PubMed  Google Scholar 

  148. Bormann CL, Curchoe CL, Thirumalaraju P, Kanakasabapathy MK, Gupta R, Pooniwala R, Kandula H, Souter I, Dimitriadis I, Shafiee H. Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. J Assist Reprod Genet. 2021;38:1641–6.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Blank C, Wildeboer RR, DeCroo I, Tilleman K,Weyers B, Petra de Sutter, Massimo Mischi, Benedictus Christiaan Schoot Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil Steril 2019; 111:318-326.

    Article  PubMed  Google Scholar 

  150. Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE. J Assist Reprod Genet. 2018;2019:1–10.

    Google Scholar 

  151. Gardner DK, Reineck P, Gibson BC, Thompson JG. Microfluidics and microanalytics to facilitate quantitative assessment of human embryo physiology. In: Agarwal A, Varghese A, Nagy ZP, editors. Practical Manual of In Vitro Fertilization: Advanced Methods and Novel Devices. 2nd ed. New Jersey: Humana Press; 2019. p. 557–66.

    Chapter  Google Scholar 

  152. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Montag M, Koster M, van der Ven K, van der Ven H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum Reprod Update. 2011;17(5):654–66.

    Article  PubMed  Google Scholar 

  154. Swann MM, Mitchison JM. Refinements in polarized light microscopy. J Exp Biol. 1950;27(2):226–37.

    Article  CAS  PubMed  Google Scholar 

  155. Keefe D, Tran P, Pellegrini C, Oldenbourg R. Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum Reprod. 1997;12(6):1250–2.

    Article  CAS  PubMed  Google Scholar 

  156. Silva CP, Kommineni K, Oldenbourg R, Keefe DL. The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes. Fertil Steril. 1999;71(4):719–21.

    Article  CAS  PubMed  Google Scholar 

  157. Squirrell JM, Wokosin DL, White JG, Bavister BD. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 1999;17(8):763–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wan Y, McDole K, Keller PJ. Light-sheet microscopy and its potential for understanding developmental processes. Annu Rev Cell Dev Biol. 2019;35:655–81.

    Article  CAS  PubMed  Google Scholar 

  159. Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Munoz-Barrutia A, Ripoll J. Applications of light-sheet microscopy in microdevices. Front Neuroanat. 2019;13:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wood BR, Chernenko T, Matthaus C, Diem M, Chong C, Bernhard U, Jene C, Brandli AA, McNaughton D, Tobin MJ, Trounson A, Lacham-Kaplan O. Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic mapping. Anal Chem. 2008;80(23):9065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rusciano G, Pesce G, Salemme M, Selvaggi L, Vaccaro C, Sasso A, Carotenuto R. Raman spectroscopy of Xenopus laevis oocytes. Methods. 2010;51(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  162. Bogliolo L, Murrone O, Di Emidio G, Piccinini M, Ariu F, Ledda S, Tatone C. Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J Assist Reprod Genet. 2013;30(7):877–82.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman PD, Godfrey KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391:1842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rinaudo P, Wang E. Fetal programming and metabolic syndrome. Annu Rev Physiol. 2012;74:107–30.

    Article  CAS  PubMed  Google Scholar 

  165. Kwong W, Wild A, Roberts P, Willis A, Fleming T. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–420.

    Article  CAS  PubMed  Google Scholar 

  166. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.

    Article  CAS  PubMed  Google Scholar 

  167. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    Article  CAS  PubMed  Google Scholar 

  168. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526–35.

    Article  CAS  PubMed  Google Scholar 

  169. Morgan HD, Jin XL, Li A, Whitelaw E, O'Neill C. The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod. 2008;79:618–23.

    Article  CAS  PubMed  Google Scholar 

  170. Basatemur E, Shevlin M, Sutcliffe A. Growth of children conceived by IVF and ICSI up to 12 years of age. Reprod Biomed Online. 2010;20:144–9.

    Article  PubMed  Google Scholar 

  171. Schendelaar P, Middelburg KJ, Bos AF, Heineman MJ, Jongbloed Pereboom M, Hadders AM. The Groningen ART cohort study: the effects of ovarian hyperstimulation and the IVF laboratory procedures on neurological condition at 2 years. Hum Reprod. 2011;26:703–12.

    Article  CAS  PubMed  Google Scholar 

  172. Wagenaar K, vanWeissenbruch M, van Leeuwen F, Cohen Kettenis P, Delemarre-van de Waal HA, Schats R, Huisman J. Self-reported behavioral and socioemotional functioning of 11- to 18-year-old adolescents conceived by in vitro fertilization. Fertil Steril. 2011;95:611–6.

    Article  PubMed  Google Scholar 

  173. Ceelen M, van Weissenbruch MM, Prein J, Smit JJ, Vermeiden JP, Spreeuwenberg M, van Leeuwen FE, de Waal HA D-v. Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8-18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum Reprod. 2009;24:2788–95.

    Article  PubMed  Google Scholar 

  174. Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JPW, van Leeuwen FE, van de Waal HAD. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab. 2007;92:3417–23.

    Article  CAS  PubMed  Google Scholar 

  175. Meister TA, Rimoldi SF, Soria R, von Arx R, Messerli FH, Sartori C, Scherrer U, Rexhaj E. Association of assisted reproductive technologies with arterial hypertension during adolescence. J Am Coll Cardiol. 2018;72:1267–74.

    Article  PubMed  Google Scholar 

  176. Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, de Marchi SF, Nicod P, Germond M, Allemann Y, Sartori C. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125:1890–6.

    Article  PubMed  Google Scholar 

  177. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan A. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13.

    Article  CAS  PubMed  Google Scholar 

  178. Tararbit K, Lelong N, Thieulin AC, Houyel L, Bonnet D, Goffinet F, Khoshnood B, Group ES. The risk for four specific congenital heart defects associated with assisted reproductive techniques: a population based evaluation. Hum Reprod. 2013;28:367–74.

    Article  CAS  PubMed  Google Scholar 

  179. Luke B, Brown MB, Wantman E, Forestieri NE, Browne ML, Fisher SC, Yazdy MM, Ethen MK, Canfield MA, Watkins S, Nichols HB, Farland LV, Oehninger S, Doody KJ, Eisenberg ML, Baker VL. The risk of birth defects with conception by ART. Hum Reprod. 2021;36(1):116–29. https://doi.org/10.1093/humrep/deaa272.

    Article  PubMed  Google Scholar 

  180. Luke B, Brown MB, Wantman E, Schymura MJ, Browne ML, Fisher SC, Forestieri NE, Rao C, Nichols HB, Yazdy MM, Gershman ST, Sacha CR, Williams M, Ethen MK, Canfield MA, Doody KJ, Eisenberg ML, Baker VL, Williams C, et al. The risks of birth defects and childhood cancer with conception by assisted reproductive technology. Hum Reprod. 2022;37(11):2672–89. https://doi.org/10.1093/humrep/deac196.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RS and PR conceptualized and wrote this manuscript.

Corresponding author

Correspondence to Romualdo Sciorio.

Ethics declarations

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments. For this type of study, formal consent is not required.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciorio, R., Rinaudo, P. Culture conditions in the IVF laboratory: state of the ART and possible new directions. J Assist Reprod Genet 40, 2591–2607 (2023). https://doi.org/10.1007/s10815-023-02934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02934-5

Keywords

Navigation