Skip to main content
Log in

Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Detection of chemical modifications induced by aging-related oxidative damage in mouse metaphase II (MII) oocytes by Raman microspectroscopy.

Methods

CD-1 mice at the age of 4–8 weeks (young mice) and 48–52 weeks (old mice), were superovulated and oocytes at metaphase II stage were recovered from oviducts. MII oocytes from young animals were divided into three groups: A) young oocytes, processed immediately after collection; B) in vitro aged oocytes, cultured in vitro for 10 h before processing; C) oxidative-stressed oocytes, exposed to 10 mM hydrogen peroxide for 2 min before processing. Oocytes from reproductively old mice were referred to as old oocytes (D). All the oocytes were analyzed by confocal Raman microspectroscopy. The spectra were statistically analyzed using Principal Component Analysis (PCA).

Results

PCA evidenced that spectra from young oocytes (A) were clearly distinguishable from those obtained from in vitro-aged, oxidative-damaged and old oocytes (B, C, D) and presented significant differences in the bands attributable to lipid components (C = C stretching, 1,659 cm−1; CH2 bending, 1,450 cm−1; CH3 deformation,1,345 cm−1; OH bending, C-N stretching, 1,211 cm-1) and protein components (amide I band,1,659 cm−1; CH2 bending modes and CH3 deformation, 1,450 cm−1; C-N and C-C stretching vibrations, 1,132 cm−1; phenylalanine’s vibration, 1,035 cm−1)

Conclusions

Raman spectroscopy is a valuable non-invasive tool for the identification of biochemical markers of oxidative damage and could represent a highly informative method of investigation to evaluate the oocyte quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effect of oxidative stress on female reproduction a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  Google Scholar 

  2. Bogliolo L, Ledda S, Innocenzi P, Ariu F, Bebbere D, Rosati I, et al. Raman microspectroscopy as a non-invasive tool to assess the vitrification-included changes of ovine oocyte zona-pellucida. Cryobiology. 2012;64:267–72.

    Article  PubMed  CAS  Google Scholar 

  3. Combelles CM, Gupta S, Agarwal A. Could oxidative stress influence the in vitro maturation of oocytes? Reprod Biomed Online. 2009;18:864–80.

    Article  PubMed  Google Scholar 

  4. Dean RT, Gieseg S, Davies MJ. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci. 1993;18:437–41.

    Article  PubMed  CAS  Google Scholar 

  5. Eichenlaub-Ritter U, Staubach N, Trapphoff T. Cromosomal and cytoplasmic context determines predisposition to maternal age-related aneuploidy: brief overview and update on MCAK in mammalian oocytes. Biochem Soc Trans. 2010;38:1681–6.

    Article  PubMed  CAS  Google Scholar 

  6. Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion. 2011;11:783–96.

    Article  PubMed  CAS  Google Scholar 

  7. El Mouatassim S, Guérin P, Ménézo Y. Mammalian oviduct and protection against free oxygen radicals expression of genes encoding antioxidant enzymes in human and mouse. Eur J Obstet Gynecol Reprod Biol. 2000;89:1–6.

    Article  PubMed  Google Scholar 

  8. Fujimoto VY, Bloom MS, Huddleston HG, Shelley WB, Ocque AJ, Browne RW. Correlations of follicular fluid oxidative stress biomarkers and enzyme activities with embryo morphology parameters during in vitro fertilization. Fertil Steril. 2011;96:1357–61.

    Article  PubMed  CAS  Google Scholar 

  9. Girotti AW. Mechanisns of lipid peroxidation. J Free Radic Biol Med. 1985;1:87–95.

    Article  PubMed  CAS  Google Scholar 

  10. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging:role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 2008;44:1295–304.

    Article  PubMed  CAS  Google Scholar 

  11. Goud P, Goud A, Van Oostveldt P, Van der Elst J, Dhont M. Fertilization abnormalities and pronucleus size asynchrony after intracytoplasmic sperm injection are related to oocyte post maturity. Fertil Steril. 1999;72:245–52.

    Article  PubMed  CAS  Google Scholar 

  12. Henkel R. Sperm preparation: state of the art-physiological aspects and applications of advanced sperm preparation methods. Asian J Androl. 2012;14:260–9.

    Article  PubMed  CAS  Google Scholar 

  13. Huser T, Orme CA, Hollars CW, Corzett MH, Balhom R. Raman spectroscopy of DNA packing in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics. 2009;2:322–32.

    Article  PubMed  CAS  Google Scholar 

  14. Li XX, Yang XG, Lu YQ, Lu SS, Zhang M, Yao HI, et al. Protective effects of melatonin against oxidative stress in flow cytometry-sorted buffalo sperm. Reprod Domest Anim. 2012;47:299–307.

    Article  PubMed  Google Scholar 

  15. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84:775–782.

    Google Scholar 

  16. Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. Environ Mol Mutagen. 2008;49:642–58.

    Article  PubMed  CAS  Google Scholar 

  17. Mallidis C, Wistuba J, Bleisteiner B, Damm OS, Gross P, Wübbeling F, Fallnich C, Burger M, Schlatt S. In situ visualization of changed DNA in human sperm by Raman microspectroscopy. Hum Reprod. 2011;26:1641–49.

    Google Scholar 

  18. Matos L, Stevenson D, Gomes F, Silva-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod. 2009;15:411–9.

    Article  PubMed  CAS  Google Scholar 

  19. Matthaus C, Bird B, Miljikovic M, Chemenko T, Romeo M, Diem M. Infrared and Raman microscopy in cell biology. Methods Cell Biol. 2008;89:275–308.

    Article  PubMed  CAS  Google Scholar 

  20. Meister K, Schmidt DA, Bründermann E, Havenith M. Confocal Raman microscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. Analyst. 2010;135:1370–4.

    Article  PubMed  CAS  Google Scholar 

  21. Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, development potential and reversal possibility. Hum Reprod Update. 2009;15:573–85.

    Article  PubMed  Google Scholar 

  22. Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, et al. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod. 2012;27(7):2130–4.

    Article  PubMed  CAS  Google Scholar 

  23. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cell Signal. 2012;24:981–90.

    Article  PubMed  CAS  Google Scholar 

  24. Robker RL, Wu LL, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2006;88:142–8.

    Article  Google Scholar 

  25. Rusciano G, Pesce G, Salemme M, Selvaggi L, Vaccaro C, Sasso A, et al. Raman spectroscopy of Xenopus laevis oocytes. Methods. 2010;51:27–36.

    Article  PubMed  CAS  Google Scholar 

  26. Sànchez V, Redmann K, Wistuba J, Wübbeling F, Burger M, Oldenhof H, et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil Steril. 2012;98:1124–9.

    Article  PubMed  Google Scholar 

  27. Shkolink K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci USA. 2011;108:1462–7.

    Article  Google Scholar 

  28. Sigman M. Refining the measurement of sperm DNA fragmentation. Fertil Steril. 2012;98:1123.

    Article  PubMed  CAS  Google Scholar 

  29. Tatone C, Carbone MC, Falone S, Aimola P, Giardinelli A, Caserta D, et al. Age-dependent changes in the expression of superoxide dismutases and catalane are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod. 2006;12:655–60.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi T, Igarashi H, Kawagoe J, Amita M, Hara S, Kurachi H. Pooe embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol Reprod. 2009;80:493–502.

    Article  PubMed  CAS  Google Scholar 

  31. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131–42.

    Article  PubMed  CAS  Google Scholar 

  32. Tarin JJ. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod. 1996;2:717–24.

    Article  PubMed  CAS  Google Scholar 

  33. Tatone C, Heizenrieder T, Di Emidio TG, Treffon P, Amicarelli F, Seidel T, et al. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum Reprod. 2011;26:1843–59.

    Article  PubMed  CAS  Google Scholar 

  34. Wood BR, Chernenko T, Matthaus C, Diem M, Chong C, Bernhard U, et al. Shedding new light on the molecular architecture of oocytes using a combination of synchrotron fourier transm-infrared and Raman spectroscopic mapping. Anal Chem. 2008;80:9065–72.

    Article  PubMed  CAS  Google Scholar 

  35. Zuccotti M, Merico V, Lecconi S, Redi CA, Garagna S. What does it take to make a develpmentally competent mammalian egg? Hum Reprod Update. 2011;17:525–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Regione Autonoma della Sardegna (LR 7, Agosto 2007, n°7) CRP-17602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Bogliolo.

Additional information

Capsule We developed a Raman spectroscopy-based approach to detect aging-related oxidative damage in oocytes derived from young and reproductively old mice. This could represent a highly informative, non-invasive tool of investigation to evaluate the oocyte quality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogliolo, L., Murrone, O., Di Emidio, G. et al. Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J Assist Reprod Genet 30, 877–882 (2013). https://doi.org/10.1007/s10815-013-0046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0046-6

Keywords

Navigation