Skip to main content
Log in

Optical Anisotropy of Nanoporous Alumina Films as the Basis for Creation of Achromatic Phase Plates with a Variable Phase Difference of the Orthogonal Polarized Components of Transmitted Radiation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Stokes polarimetry was used to evaluate the birefringence of nanoporous alumina films. The transmittance of the film and the degree of polarization of the transmitted radiation were measured for angles of incidence at which the phase difference of the orthogonal polarized components of the transmitted radiation was λ/4 or λ/2. The porosity and film pore radii were estimated using the Maxwell–Garnet model. The possibility of creating achromatic phase plates based on nanoporous alumina film with a variable phase difference of the orthogonal polarized components of the transmitted radiation that can function as quarter-wave and half-wave plates is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York (1970), 808 pp.

    Google Scholar 

  2. L. A. Golovanʹ, V. Yu. Timoshenko, and P. K. Kashkarov, Usp. Fiz. Nauk, 177, 619–638 (2007).

    Article  Google Scholar 

  3. T. Kikuchi, O. Nishinaga, Sh. Natsui, and R. O. Suzuki, Electrochim. Acta, 156, 235–243 (2015).

    Article  Google Scholar 

  4. L. Micheli, N. Sarmah, H. Luo, K. S. Reddy, and T. Mallick, Renewable Sustainable Energy Rev., 20, 595–610 (2013).

    Article  Google Scholar 

  5. D. H. Goldstein, Polarized Light, Marcel Dekker, New York (2003).

    Google Scholar 

  6. F. Le Roy-Brehonnet and B. Le Jeune, Prog. Quantum Electron., 21, 109–151 (1997).

    Article  ADS  Google Scholar 

  7. R. A. Chipman, in: Handbook of Optics, Opt. Soc. Am., Washington, D.C. (1995), 22.1–22.36.

  8. B. J. DeBoo, Investigation of Polarization Properties Using Active Imaging Polarimetry, Ph.D. Dissertation, University of Arizona (2004).

  9. V. N. Snopko, Polarization Characteristics of Optical Radiation [in Russian], Navuka i Tékhnika, Minsk (1992).

  10. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics, John Wiley & Sons, Inc., London and New York (1975).

    MATH  Google Scholar 

  11. H. Masuda and K. Fukuda, Science, 268, 1466–1468 (1995).

    Article  ADS  Google Scholar 

  12. N. I. Mukhurov, I. V. Gasenkova, and I. M. Andrukhovich, J. Mater. Sci. Nanotechnol., 1, 110–116 (2014).

    Google Scholar 

  13. V. N. Snopko, Izmer. Tekh., No. 12, 19–22 (2008).

  14. V. A. Dlugunovich, A. Yu. Zhumar, and N. I. Mukhurov, J. Appl. Spectrosc., 85, 936–941 (2018).

    Article  ADS  Google Scholar 

  15. M. Saito and M. Miyagi, J. Opt. Soc. Am. A, 6, 1895–1903 (1989).

    Article  ADS  Google Scholar 

  16. A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B: Lasers Opt., 84, 327–331 (2006).

    Article  ADS  Google Scholar 

  17. C. F. Boren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, Inc., New York et al. (1983).

    Google Scholar 

  18. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 235402 (2006).

  19. G. Irmer, J. Monecke, and P. Verma, Soft and Hard Magnetic Nanomaterials, in: Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, N. S. Nalwa (Ed.), American Scientific Publications (2003), pp. 1–26.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Zhumar.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 324–328, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-324-328.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlugunovich, V.A., Zhumar, A.Y. & Mukhurov, N.I. Optical Anisotropy of Nanoporous Alumina Films as the Basis for Creation of Achromatic Phase Plates with a Variable Phase Difference of the Orthogonal Polarized Components of Transmitted Radiation. J Appl Spectrosc 90, 414–418 (2023). https://doi.org/10.1007/s10812-023-01548-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01548-0

Keywords

Navigation