Skip to main content
Log in

Transformation of Light Polarization Using Nanoporous Alumina Films

  • Published:
Journal of Applied Spectroscopy Aims and scope

The polarization transformations of light interacting with nanoporous alumina films were investigated theoretically and experimentally. It was shown that a compact device based on nanoporous alumina film could be designed to control light polarization by functioning in various regimes, in particular, as quarter-wave and half-wave plates. It was established that the regimes could be switched from one to another by varying the film orientation relative to the incident light beam. It was found that quasi-circularly polarized light beams with a wide angular spectrum could be formed in a broad spectral region by using the nanoporous alumina film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Gullis, I. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909–965 (1997).

    Article  ADS  Google Scholar 

  2. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38, 1–126 (2000).

    Article  ADS  Google Scholar 

  3. W. Theiss, Surf. Sci. Rep., 29, 91–192 (1997).

    Article  ADS  Google Scholar 

  4. F. J. P. Schuurmans, D. Vanmaekelbergh, J. van de Lagemaat, and A. Lagendijk, Science, 284, 141–143 (1999).

    Article  ADS  Google Scholar 

  5. L. M. Lyn’kov and N. I. Mukhurov, Microstructures Based on Anodic Alumina Technology [in Russian], Bestprint, Minsk (2002).

    Google Scholar 

  6. I. V. Gasenkova, N. I. Masurenko, and E. V. Ostapenko, Poverkhnost Rentgen. Sinkhrotron. Neutron. Issled., 10, 96–101(2011).

    Google Scholar 

  7. H. Masuda, K. Yada, and A. Osaka, J. Appl. Phys., 37, L1340–L1342 (1998).

    Article  ADS  Google Scholar 

  8. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett., 72, 1173–1175 (1998).

    Article  ADS  Google Scholar 

  9. J. De Laet, H. Terryn, and J. Vereecken, Thin Solid Films, 320, 241–252 (1998).

    Article  Google Scholar 

  10. K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, J. Vac. Sci. Technol., B, 23, L9–L12 (2005).

    Article  Google Scholar 

  11. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, Jpn. J. Appl. Phys., 38, L1403–L1405 (1999).

    Article  ADS  Google Scholar 

  12. K. Sokolov, R. Drezek, and K. Gossage, Opt. Express, 5, 302–307 (1999).

    Article  ADS  Google Scholar 

  13. C.-I. Chuang, S.-H. Lin, and Y.-F. Chao, Opt. Lasers Eng., 51, 861–866 (2013).

    Article  Google Scholar 

  14. P.-C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, and T. T. Yang, Opt. Express, 17, 15860–15884 (2009).

    Article  ADS  Google Scholar 

  15. Y.-L. Lo, T.-T.-H. Pham, and P.-C. Chen, Opt. Express, 18, 9133–9150 (2010).

    Article  ADS  Google Scholar 

  16. C.-C. Liao and Y.-L. Lo, Opt. Express, 21, 16831–16851 (2013).

    Article  ADS  Google Scholar 

  17. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Koshkarev, Usp. Fiz. Nauk, 177, 619–638 (2007).

    Article  Google Scholar 

  18. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater., 11, 579–585 (1999).

    Article  Google Scholar 

  19. H. Fan, H. R. Bentley, K. R. Kathan, P. Clem, Y. Lu, and C. J. Brinker, J. Non-Cryst. Solids, 285, 79–83 (2001).

    Google Scholar 

  20. P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Karmer, G. D. Stucky, and B. F. Chmelka, Chem. Mater., 14, 3284–3294 (2002).

    Article  Google Scholar 

  21. B. W. Eggiman, M. P. Tate, and H. W. Hillhouse, Chem. Mater., 18, 723–730 (2006).

    Article  Google Scholar 

  22. A. Navid and L. Pilon, Thin Solid Films, 516, 4159–4167 (2008).

    Article  ADS  Google Scholar 

  23. A. Loni, R. J. Bozeat, R. Arens-Fischer, H. Munder, H. Lueth, H. F. Arrand, and T. M. Benson, Thin Solid Films, 276, 143–146 (1996).

    Article  ADS  Google Scholar 

  24. H. F. Arrand, T. M. Benson, A. Loni, M. G. Krueger, M. Thoenissen, and H. Lueth, Electron. Lett., 33, 1724–1725 (1997).

    Article  Google Scholar 

  25. A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky, and E. Simonyi, Thin Solid Films, 398, 513–522 (2001).

    Article  ADS  Google Scholar 

  26. R. J. Martin-Palma, V. Torres-Costa, M. Arroyo-Hernandez, M. Manso, J. Perez-Rigueiro, and J. M. Martinez-Duart, Microelectron. J., 35, 45–48 (2004).

    Article  Google Scholar 

  27. M. Arroyo-Hernandez, R. J. Martin-Palma, J. Perez-Rigueiro, J. P. Garcia-Ruiz, J. L. Garcia-Fierro, and J. M. Martinez-Duart, Mater. Sci. Eng., C, 23, 697–701 (2003).

    Article  Google Scholar 

  28. S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, Mater. Sci. Eng., 15, 277–282 (2001).

    Article  Google Scholar 

  29. M. G. Berger, M. Thonissen, R. Arensfischer, H. Munder, H. Luth, M. Arntzen, and W. Theiss, Thin Solid Films, 255, 313–316 (1995).

    Article  ADS  Google Scholar 

  30. J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Yu. Timoshenko, G. Polisski, and F. Koch, Appl. Phys. Lett., 78, 3887–3889 (2001).

    Article  ADS  Google Scholar 

  31. M. Kruger, M. Marso, M. G. Berger, M. Thonissen, S. Billat, R. Loo, W. Reets, H. Luth, S. Hilbrich, R. Arens-Fischer, and P. Grosse, Thin Solid Films, 297, 241–244 (1997).

    Article  ADS  Google Scholar 

  32. S. Zangooie, M. Schubert, C. Trimble, D. W. Thompson, and J. A. Woollam, Appl. Opt., 40, 906–912 (2001).

    Article  ADS  Google Scholar 

  33. S. Zangooie, R. Jansson, and H. Arwin, J. Appl. Phys., 86, 850–858 (1999).

    Article  ADS  Google Scholar 

  34. C. Mazzoleni and L. Pavesi, Appl. Phys. Lett., 67, 2983–2985 (1995).

    Article  ADS  Google Scholar 

  35. B. O’Regan and M. Gratzel, Nature, 353, 737–740 (1991).

    Article  ADS  Google Scholar 

  36. P. Ravirajan, S. A. Haque, D. Poplavskyy, J. R. Durrant, D. D. C. Bradley, and J. Nelson, Thin Solid Films, 451, 624–629 (2004).

    Article  ADS  Google Scholar 

  37. L. Schmidt-Mende and M. Gratzel, Thin Solid Films, 500, 296–301 (2006).

    Article  ADS  Google Scholar 

  38. H. Masuda and K. Fukuda, Science, 268, 1466–1468 (1995).

    Article  ADS  Google Scholar 

  39. N. I. Mukhurov, I. V. Gasenkova, and I. M. Adruhovich, J. Mater. Sci. Nanotechnol., 1, 110–116 (2014).

    Google Scholar 

  40. F. I. Fedorov, Theory of Gyrotropy [in Russian], Nauka i Tekhnika, Minsk (1976).

    Google Scholar 

  41. V. N. Snopko, Izmer. Tekh., 12, 19–22 (2008).

    Google Scholar 

  42. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 235402 (1–8) (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kurilkina.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 5, pp. 766–772, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlugunovich, V.A., Zhumar, A.Y., Kurilkina, S.N. et al. Transformation of Light Polarization Using Nanoporous Alumina Films. J Appl Spectrosc 82, 824–830 (2015). https://doi.org/10.1007/s10812-015-0186-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0186-9

Keywords

Navigation