Skip to main content
Log in

Screening and Evaluation of Performance Indexes for Multicomponent Gas Absorption Spectra of Coal Spontaneous Combustion

  • Published:
Journal of Applied Spectroscopy Aims and scope

Coal spontaneous combustion (CSC) has been a global hazard for decades, causing significant losses. Hydrocarbon gases, including carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ethylene (C2H4), acetylene (C2H2), and oxygen (O2), have proved to be good inhibitors for forecasting CSC. However, the cross-interference and absorption spectrum overlaps prevent their practical applications. This study simulates the refined distribution of the absorption lines of these index gases in the infrared spectral range to solve these problems. By selecting the optimal absorption lines for each gas, their detection performance was experimentally tested, and the results were analyzed using the Allan variance method. The results reveal that the optimal absorption lines are centered at 1566.64, 1572.32, 1653.72, 1626.34, 1530.37, and 760.65 nm for CO, CO2, CH4, C2H4, C2H2, and O2, respectively. Relative detection errors are 0.62, 0.51, 3.06, 4.20, 0.58, and 1.96%, and the detection limits are 3.47 × 10−6, 4.56 × 10−6, 0.53 × 10−6, 2.85 × 10−6, 0.33 × 10−6, and 1581 × 10−6, respectively. The detection sensitivity and comprehensive detection accuracy were significantly improved. This study will provide a basis for solving the problem of the cross-aliasing interference between index gases for bituminous CSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Q. Tang, S. Q. Yang, G. Xu, and M. Sharifzadeh, Proc. Saf. Environ., 132, 182–188 (2019).

    Article  Google Scholar 

  2. Y. W. Song, S. Q. Yang, X. C. Hu, W. X. Song, N. W. Sang, J. W. Cai, and Q. Xu, Proc. Saf. Environ., 129, 8–16 (2019).

    Article  Google Scholar 

  3. W. C. Zheng, S. Q. Yang, W. Z. Li, and J. Wang, Fire Mater., 44, No. 5, 660–672 (2020).

    Article  Google Scholar 

  4. B. Du, Y. T. Liang, and F. C. Tian, Fire Safety J., 121, Article ID 103298 (2021).

  5. W. C. Xia, Y. J. Li, and C. K. Niu, Energ. Source A, 41, No. 9, 1110–1115 (2019).

    Article  Google Scholar 

  6. H. Q. Zhu, K. Sheng, Y. L. Zhang, S. H. Fang, and Y. L. Wu, PLoS One, 13, No. 8, Article ID 0202724 (2018).

  7. Q. Xu, S. Q. Yang, J. W. Cai, B. Z. Zhou, and Y. A. Xin, Proc. Saf. Environ., 118, 195–202 (2018).

    Article  Google Scholar 

  8. L. Ma, R. Z. Guo, M. M. Wu, W. F. Wang, L. F. Ren, and G. M. Wei, Proc. Saf. Environ., 142, 370–379 (2020).

    Article  Google Scholar 

  9. T. Ma, X. K. Chen, X. W. Zhai, and Y. E. Bai, RSC Adv., 9, No. 56, 32476–32489 (2019).

    Article  ADS  Google Scholar 

  10. H. C. Ji, W. Zeng, and Y. Q. Li, Nanoscale, 11, No. 47, 22664–22684 (2019).

    Article  Google Scholar 

  11. W. Li, W. X. Luo, M. Y. Li, L. Y. Chen, L. Y. Chen, G. Hua, and M. J. Yu, Front. Chem., 9, Article ID 723186 (2021).

  12. M. M. Kmiec, D. Tse, and P. Kuppusamy, Adv. Exp. Biol., 1269, 259–263 (2021).

    Article  Google Scholar 

  13. J. E. Welke, K. C. Hernandes, K. P. Nicolli, J. A. Barbara, A. C. T. Biasoto, and C. A. Zini, J. Sep. Sci., 44, No. 1, 135–168 (2021).

    Article  Google Scholar 

  14. H. Sun, Y. B. Shi, X. Ding, X. B. Ding, and H. B. Wu, IEEE Access, 9, 51983–51995 (2021).

    Article  Google Scholar 

  15. Y. S. H. Parkhangil, J. Sensor Sci. Technol., 27, No. 5, 294–299 (2018).

    Google Scholar 

  16. Z. L. Cui, X. X. Zhang, D. C. Chen, Y. Li, Y. F. Wang, Y. Zhang, and H. Wang, Appl. Spectrosc., 75, No. 3, 265–273 (2021).

    Article  ADS  Google Scholar 

  17. V. Vitvitsky and R. Banerjee, Hydrogen Sulfide Redox Biology A, 554, 111–123 (2015).

    Article  Google Scholar 

  18. Y. C. Lin, F. Liu, X. G. He, W. Jin, and M. Zhang, Opt. Express, 25, No. 25, Article ID 31568 (2017).

  19. C. Lindner, J. Kunz, S. J. Herr, S. Wolf, and J. Kiebling, Opt. Express, 29, No. 3, 4035–4047 (2021).

    Article  ADS  Google Scholar 

  20. R. N. Sa, L. B. Bu, Q. Wang, and J. Zhou, Optik, 149, 113–124 (2017).

    Article  ADS  Google Scholar 

  21. Z. L. Cui, X. X. Zhang, Z. Cheng, Y. L. Li, and H. Xiao, Spectrochim. Acta A, 215, 187–195 (2019).

    Article  ADS  Google Scholar 

  22. M. Reeves, M. Musculus, and P. Farrell, Appl. Optics, 37, No. 28, 6627–6635 (1998).

    Article  ADS  Google Scholar 

  23. C. W. Wen, X. Huang, and C. L. Shen, J. Raman Spectrosc., 51, No. 5, 781–787 (2020).

    Article  ADS  Google Scholar 

  24. S. L. Zha, H. L. Ma, C. L. Zha, X. Y. Cai, and Y. Y. Li, J. Near Infrared Spectrosc., 28, No. 4, 236–242 (2020).

    Article  ADS  Google Scholar 

  25. K. L. Mackay, A. Chanda, G. Mackay, J. T. Pisano, T. D. Durbin, K. Crabbe, and T. Smith, J. Appl. Spectrosc., 83, No. 4, 627–633 (2016).

    Article  ADS  Google Scholar 

  26. J. M. Rey, M. Fill, F. Felder, and M. W. Sigrist, Appl. Phys. BLasers O, 117, No. 3, 935–939 (2014).

  27. P. Werle, R. Muckel, F. D'Amato, and T. Lancia, Appl. Phys. BLasers O, 67, No. 3, 307–315 (1995).

  28. U. Gustafsson, J. Sandsten, and S. Svanberg, Appl. Phys. BLasers O, 71, No. 6, 853–857 (2000).

  29. C. Murzyn, A. Sims, H. Krier, and N. Glumac, Opt. Laser. Eng., 110, No. 11, 186–192 (2018).

    Article  Google Scholar 

  30. X. Q. Guo, F. Zheng, C. L. Li, X. F. Yang, and N. Li, Opt. Laser. Eng., 115, No. 4, 243–248 (2019).

    Article  Google Scholar 

  31. A. Sepman, Y. Ögren, Z. Qu, H. Wiinikka, and F. M. Schmidt, P. Combust. Inst., 36, No. 3, 4541–4548 (2017).

    Google Scholar 

  32. H. Xia, W. Q. Liu, Y. J. Zhang, R.F. Kan, Y. B. Cui, M. Wang, Y. He, X. J. Cui, J. Ruan, and H. Geng, Spectrosc. Spectr. Anal., 29, No. 3, 844–847 (2009).

    Google Scholar 

  33. R. F. Kan, H. H. Xia, Z. Y. Xu, L. Yao, and J. Ruan, Chin. J. Lasers, 45, No. 9, 67–82 (2018).

    Google Scholar 

  34. C. Y. Jiang, M. X. Sun, Y. X. Li, and C. J. Wang, Chin. J. Lasers, 45, No. 2, 197–205 (2018).

    Google Scholar 

  35. M. Jiang, W. B. Feng, H. Gao, M. Zhang, and X. N. Meng, J. Chin. Coal Soc., 46, No. 7, 1–6 (2021).

    Google Scholar 

  36. L. Jiang, H. Xia, F. Dong, T. Pang, and B. Wu, Opt. Precis. Eng., 21, No. 11, 2771–2777 (2013).

    Article  Google Scholar 

  37. T. J. Johnson, K. D. Hughey, T. A. Blake, W. S. Steven, L. M. Tanya, and L. S. Robert, J. Phys. Chem. A, 125, No. 17, 3793–3801 (2021).

    Article  Google Scholar 

  38. L. J. Lan, J. Chen, Y. C. Wu, Y. Bai, and Y. F. Li, IEEE Trans. Instrum. Meas., 68, No. 4, 1140–1147 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 1, p. 115, January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, H., Yang, B. et al. Screening and Evaluation of Performance Indexes for Multicomponent Gas Absorption Spectra of Coal Spontaneous Combustion. J Appl Spectrosc 90, 179–188 (2023). https://doi.org/10.1007/s10812-023-01520-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01520-y

Keywords

Navigation