Skip to main content
Log in

Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The blending of coal with biomass can lead to synergistic combustion behaviors. The combustion profile of two biomass sources, two coals and subsequent blends was studied using thermogravimetric analysis (TG). Ignition and burnout performances were identified and calculated from thermal curves. The comprehensive combustion performance index S was calculated from the thermogravimetric curves. CO2 and CO concentrations were also studied via on-line analysis of TG–Fourier transform infrared spectroscopy. The results indicated that complicated chemical processes took place when coal was combusted with biomass, as compared with coal or biomass only. The lower ignition temperatures and higher volatility of biomass significantly improve the combustion behavior of coal. However, when biomass content in the blends exceeded 10 %, ignition and burnout performances were minimally affected. The combustion index S appears to give a more comprehensive description of the combustion process. The results from CO/CO2 ratio also support the combustion behavior for the blending of coal and biomass. For this study, the addition of 10 % of biomass would be the optimum recommended combustion ratios for coal and biomass blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blasi CD. Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci. 2009;35(2):121–40.

    Article  Google Scholar 

  2. Arvelakis S, Moutsatsou A, Sotiriou C, et al. Prediction of the behaviour of biomass ash in fluidized bed combustors and gasifiers. J Therm Anal Calorim. 1999;56(3):1271–8.

    Article  CAS  Google Scholar 

  3. Yu LJ, Wang S, Jiang XM, et al. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611–7.

    Article  CAS  Google Scholar 

  4. Dumanli AG, Ta S, Yürüm Y. Co-firing of biomass with coals. J Therm Anal Calorim. 2011;103(3):925–33.

    Article  CAS  Google Scholar 

  5. Wang X, Si J, Tan H, et al. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw. Energy Fuels. 2010;24(9):5215–21.

    Article  CAS  Google Scholar 

  6. Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel. 2006;85(9):1186–93.

    Article  CAS  Google Scholar 

  7. Gil MV, Casal D, Pevida C, et al. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101(14):5601–8.

    Article  CAS  Google Scholar 

  8. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;87(1):141–8.

    Article  CAS  Google Scholar 

  9. Sahu SG, Sarkar P, Chakraborty N, et al. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010;91(3):369–78.

    Article  CAS  Google Scholar 

  10. Tillman DA. Cofiring benefits for coal and biomass. Biomass Bioenergy. 2000;19(6):363–4.

    Article  Google Scholar 

  11. Zhang KH, Zhang K, Cao Y, Pan WP. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresour Technol. 2013;131(3):325–32.

    Article  CAS  Google Scholar 

  12. Arias B, Pevida C, Rubiera F, et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel. 2008;87(12):2753–9.

    Article  CAS  Google Scholar 

  13. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114(2):519–29.

    Article  CAS  Google Scholar 

  14. Vamvuka D, Karouki E, Sfakiotakis S. Gasification of waste biomass chars by carbon dioxide via thermogravimetry. Fuel. 2011;90:1120–7.

    Article  CAS  Google Scholar 

  15. Skreiberg A, Skreberg O, Sandquist J, Sorum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90:2189–97.

    Article  Google Scholar 

  16. Stenseng M, Zolin A, Cenni R, Frandsen F, Jensen A, Dam-Johansen K. Thermal analysis in combustion research. J Therm Anal Calorim. 2001;64:1325–34.

    Article  CAS  Google Scholar 

  17. Calvo LF, Sanchez ME, Moran A, Garcia AI. TG–MS a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge. J Therm Anal Calorim. 2004;78:587–98.

    Article  CAS  Google Scholar 

  18. Villanueva M, Proupin J, Rodrigez-Añón JA, Fraga-Grueiro L, Salgado J, Barros N. Energetic characterization of forest biomass by calorimetry and thermal analysis. J Therm Anal Calorim. 2011;104:61–7.

    Article  CAS  Google Scholar 

  19. Zhai Y, Peng W, Zeng G, Fu Z, Lan Y, Chen H, Wang C, Fan X. Pyrolysis characteristics and kinetic of sewage sludge for different size and heating rates. J Therm Anal Calorim. 2012;107:1015–22.

    Article  CAS  Google Scholar 

  20. Sebestyén Z, Lezsovits F, Jakab E, Várhegyi G. Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. J Therm Anal Calorim. 2012;110:1501–9.

    Article  Google Scholar 

  21. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis. Bioresour Technol. 2011;102:6230–8.

    Article  CAS  Google Scholar 

  22. Grotkjær T, Dam-Johansen K, Jensen AD, Glarborg P. An experimental study of biomass ignition. Fuel. 2003;82:825–33.

    Article  Google Scholar 

  23. Cheng H, Yang J, Frost RL, Wu Z. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites. Spectrochim Acta A Mol Biomol Spectrosc. 2011;83:518–24.

    Article  CAS  Google Scholar 

  24. Hansson KM, Samuelsson J, Tullin C, Åmand LE. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame. 2004;137:265–77.

    Article  CAS  Google Scholar 

  25. Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochim Acta. 2011;526:192–9.

    Article  CAS  Google Scholar 

  26. Jeguirim M, Dorge S, Trouvé G. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour Technol. 2010;101:788–93.

    Article  CAS  Google Scholar 

  27. Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon JK, Park YK. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol. 2014;101:3672–7.

    Article  Google Scholar 

  28. Jiang X, Li C, Chi Y, Yan J. TG–FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater. 2010;173:205–10.

    Article  CAS  Google Scholar 

  29. Riaza J, Khatami R, Levendis YA, Álvarez L, Gil MV, Pevida C, Rubiera F, Pis JJ. Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass Bioenergy. 2014;64:162–74.

    Article  CAS  Google Scholar 

  30. Giuntoli J, de Jong W, Arvelakis S, Spliethoff H, Verkooijen AHM. Quantitative and kinetic TG–FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (DDGS) and chicken manure. J Anal Appl Pyrolysis. 2009;85:301–12.

    Article  CAS  Google Scholar 

  31. Yang H, Yan R, Chen H, Dong HL, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.

    Article  CAS  Google Scholar 

  32. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101:4584–92.

    Article  CAS  Google Scholar 

  33. Safi MJ, Mishra IM, Prasad B. Global degradation kinetics of pine needles in air. Thermochim Acta. 2004;412:155–62.

    Article  CAS  Google Scholar 

  34. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel. 2003;82:1949–60.

    Article  CAS  Google Scholar 

  35. Chandrasekaran SR, Hopke PK. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. Bioresour Technol. 2012;125:52–8.

    Article  CAS  Google Scholar 

  36. Fang X, Jia L. Experimental study on ash fusion characteristics of biomass. Bioresour Technol. 2012;104:769–74.

    Article  CAS  Google Scholar 

  37. Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2006;77:22–7.

    Article  CAS  Google Scholar 

  38. Biagini E, Tognotti L. Comparison of devolatilization/char oxidation and direct oxidation of solid fuels at low heating rate. Energy Fuels. 2006;20:986–92.

    Article  CAS  Google Scholar 

  39. Niu SL, Han KH, Lu CM. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process. Energy Convers Manage. 2011;52:532–7.

    Article  CAS  Google Scholar 

  40. Su W, Ma H, Wang Q, Li J, Ma J. Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG–FTIR. J Anal Appl Pyrolysis. 2013;99:79–84.

    Article  CAS  Google Scholar 

  41. Zheng G, Koziński JA. Thermal events occurring during the combustion of biomass residue. Fuel. 2000;79:181–92.

    Article  CAS  Google Scholar 

  42. Guo ZG, Chen XL, Xu Y, Liu HF. Study of flow characteristics of biomass and biomass–coal blends. Fuel. 2015;141:207–13.

    Article  CAS  Google Scholar 

  43. Sahu SG, Chakraborty N, Sarkar PS. Coal–biomass co-combustion: an overview. Renew Sustain Energy Rev. 2014;39:575–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the 111 Project (B12034), and the technical support from Institute for Combustion Science and Environmental Technology in Western Kentucky University was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, W., Zhang, Y. et al. Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy. J Therm Anal Calorim 122, 1289–1298 (2015). https://doi.org/10.1007/s10973-015-4841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4841-4

Keywords

Navigation