Skip to main content
Log in

Biostimulating activity of biomass extracts and supernatants from a culture of Arthrospira platensis enriched with L-tryptophan

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present study was conducted with the aim of evaluating the effects, over 6 days, of different intensities of continuous light (20, 40, and 60 µmol photons m-2 s-1) on the growth of Arthrospira platensis and its impact on the production of phycocyanin, carotenoids, and intracellular/extracellular auxins, using a medium supplemented with 0.5 g L-1 of L-tryptophan. Additionally, the study aimed to assess the effect of treatments on the biostimulant activity of the supernatant (T0: untreated, T1: treated) compared to that of biomass extracts (T2). T0, T1, and T2 were adjusted to a concentration of 0.1 mg L-1 of indole-3-acetic acid (IAA) and a pH of 7.4. The results revealed that light intensities of 40 and 60 µmol photons m-2 s-1 produced the highest levels of extracellular IAA on day 2 (20.1 and 33.01 mg L-1, respectively), while an intensity of 20 µmol photons m-2 s-1 reached peak IAA production on day 3 (25.74 mg L-1), followed by a subsequent decrease. Phycocyanin concentrations markedly decreased after maximal IAA production under all light conditions. Tukey's analysis indicated that treatments T1 and T2 significantly increased the number and length of secondary roots in mung beans by 157% and 350%, respectively, with no significant differences between them, while the untreated supernatant (T0) exhibited a minor effect. The study concludes that under all assessed light conditions, concentrations of phycocyanin and carotenoids drastically decreased after peak IAA production, gradually recovering in the following days. Additionally, the treated supernatant and biomass extract significantly enhanced root growth in mung beans, highlighting the importance of the treatment method for biostimulation and suggesting potential for improved storage and transportation. Future research should focus on refining supernatant treatments to optimize biostimulant activity and facilitate commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ahmed M (2010) Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9. J Microbiol Biotechnol 20:1259–65

    Article  CAS  PubMed  Google Scholar 

  • Akgül F (2019) Effect of Spirulina platensis (Gomont) Geitler extract on seed germination of wheat and barley. Alienteri J Agr Sci 34:148–153

    Article  Google Scholar 

  • Ambrosini S, Prinsi B, Zamboni A, Espen L, Zanzoni S, Santi C, Varanini Z, Pandolfini T (2022) Chemical characterization of a collagen-derived protein hydrolysate and biostimulant activity assessment of its peptidic componentsm. J Agric Food Chem 70:11201–11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiklahan R, Chirasuwan N, Bunnag B (2012) Stability of biomass extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochem 47:659–664

    Article  CAS  Google Scholar 

  • Conselvan GB, Pizzeghello D, Francioso O, Di Foggia M, Nardi S, Carletti P (2017) Biostimulant activity of humic substances extracted from leonardites. Plant Soil 4:119–134

    Article  Google Scholar 

  • De Oliveira MA, Monteiro MP, Leite DG (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult Int 7:261–275

  • Di Filippo-Herrera DA, Muñoz-Ochoa M, Hernández-Herrera RM, Hernández-Carmona G (2019) Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. J Appl Phycol 31:2025–203

    Article  Google Scholar 

  • Dos Santos RR, Corrêa PS, Dantas FML, Teixeira CMLL (2019) Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresour Technol Rep 7:100226

    Article  Google Scholar 

  • Duong TT, Nguyen TTL, Van Dinh TH, Hoang TQ, Vu TN, Doan TO et al (2021) Auxin production of the filamentous cyanobacterial Planktothricoides strain isolated from a polluted river in Vietnam. Chemosphere 284:131242

    Article  CAS  PubMed  Google Scholar 

  • European Union (2019) Regulation of the European parliament and of the council laying down rules on the making. Available on the market of EU fertilising products and amending regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing regulation (EC) No 2003/2003. European Commission, Brussels, p 4. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC. Accessed 17 Aug 2023

  • Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIR (2023) Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals 16:592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geries LSM, Elsadany AY (2020) Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Arch Microbiol 203:169–181

    Article  PubMed  Google Scholar 

  • Gifuni I, Pollio A, Safi C, Marzocchella A, Olivieri G (2019) Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol 37:242–252

    Article  CAS  PubMed  Google Scholar 

  • Godlewska K, Michalak I, Pacyga P, Baśladyńska S, Chojnacka K (2019) Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol 35:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Li Y, Zhang Y, Li G, Chen Y (2011) Development of sample preparation method for auxin analysis in plants by vacuum microwave-assisted extraction combined with molecularly imprinted clean-up procedure. Anal Bioanal Chem 399:3367–74

    Article  CAS  PubMed  Google Scholar 

  • Jafarlou MB, Pilehvar B, Modaresi M, Mohammadi M (2022) Interactive effects of seaweed and microalga extract priming as a biostimulant agent on the seed germination indices and primary growth of milkweed (Calotropis procera Ait.). Biologia 77:1283–1293

    Article  CAS  Google Scholar 

  • Kapoore RV, Wood EE, Llewellyn CA (2021) Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 49:107754

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Mógor ÁF, Ördög V, Lima GPP, Molnár Z, Mógor G (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460

    Article  Google Scholar 

  • Mohammed MK, Mohd MK (2011) Enhancement in production of phenolic compounds (AntiOxidants) in Spirulina plantensis under different IAA regimes. Int J Eng Sci Technol 3:3004–3009

    Google Scholar 

  • Pagels F, Pereira RN, Vicente AA, Guedes AC (2021) Extraction of pigments from microalgae and cyanobacteria—A review on current methodologies. Appl Sci 11:5187

    Article  CAS  Google Scholar 

  • Pannacci E, Baratta S, Falcinelli B, Farneselli M, Tei F (2022) Mugwort (Artemisia vulgaris L) aqueous extract: hormesis and biostimulant activity for seed germination and seedling growth in vegetable crops. Agriculture 12:1329

    Article  CAS  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    Article  CAS  Google Scholar 

  • Salkowski E (1885) Ueber das Verhalten der Skatolcarbonsäure im Organismus. Z Physiol Chem 9:23–33

    Google Scholar 

  • Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81

    Article  CAS  Google Scholar 

  • Sharma SHS, Lyons G, McRoberts C, McCall D, Carmichael E, Andrews F, Swan R, McCormack R, Mellon R (2012) Biostimulant activity of brown seaweed species from Strangford Lough: Compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J Appl Phycol 24:1081–1091

    Article  CAS  Google Scholar 

  • Stramarkou M, Papadaki S, Kyriakopoulou K, Tzovenis I, Chronis M, Krokida M (2021) Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. Aquat Food Prod Technol 30:498–516

    Article  CAS  Google Scholar 

  • Tanaka K, Kishi M, Assaye H, Toda T (2020) Low temperatures in dark period affect biomass productivity of a cyanobacterium Arthrospira platensis. Algal Res 52:102132

    Article  Google Scholar 

  • Varia J, Kamaleson C, Lerer L (2022) Biostimulation with phycocyanin-rich Spirulina extract in hydroponic vertical farming. Sci Hortic 299:111042

    Article  CAS  Google Scholar 

  • Villaró S, Acién G, Alarcón J, Ruiz Á, Rodríguez-Chikri L, Viviano E, Lafarga T (2023) A zero-waste approach for the production and use of Arthrospira platensis as a protein source in foods and as a plant biostimulant in agriculture. J Appl Phycol 35:2619–2630

    Article  Google Scholar 

  • Zapata D, Arroyave C, Cardona L, Aristizábal A, Poschenrieder C, Llugany M (2021) Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Res 59:102469

    Article  Google Scholar 

  • Zarrouk C (1966) Contribution a l’étude d’une cyanophycée. Influence de divers facteurs physique et chimique sur la croissance et la photosynthèse de Spirulina maxima (Sech. et Gardner) Geitler. PhD Thesis, University of Paris, France

  • Zavřel T, Chmelík D, Sinetova MA, Červený J (2018) Spectrophotometric determination of phycobiliprotein content in cyanobacterium Synechocystis. J Vis Exp 11:58076

    Google Scholar 

Download references

Funding

Financial support was provided by Colombian Ministry of Science and Technology (Grant 445-2021).

Author information

Authors and Affiliations

Authors

Contributions

Experimentation, analysis, writing, original draft development: NL. Review and supervision: HA. Methodology, conceptualization, review, and funding acquisition: HF.

Corresponding author

Correspondence to Hugo Fabian Lobatón García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Mejía, N., Martínez Correa, H.A. & Lobatón García, H.F. Biostimulating activity of biomass extracts and supernatants from a culture of Arthrospira platensis enriched with L-tryptophan. J Appl Phycol (2024). https://doi.org/10.1007/s10811-024-03237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-024-03237-7

Keywords

Navigation