Skip to main content
Log in

Variation in the fatty acid composition of microalgal lipids due to the effect of the extraction method

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Lipid extraction from microalgae was studied more specifically considering the effects of the extraction method and solvent mixture on cell walls. Chlorella vulgaris and Nannochloropsis oculata were maintained in Bold Basal Medium (BBM) and, Dunaliella salina and Dunaliella tertiolecta in Guillard "F/2" medium, sterile with continuous aeration at 18 ºC at 80 µmol photons m−2 s−1. The objective of the study was to evaluate and compare the lipid content and fatty acid profiles of 4 microalgae species (freshwater and marine species) using two lipid extraction methods, Soxhlet and ultrasonication. Biomass production was greatest in the stationary phase for all microalgae, with D. salina exhibiting the highest production with 0.40–0.42 g L−1. Biomass productivity for freshwater microalgae was higher in the stationary phase (0.0360–0.0407 g L−1 day−1) and in the exponential phase for marine microalgae (0.057–0.064 g L−1 day−1). The highest percentage of lipids in marine microalgae was between 38–54% by weight in the stationary phase, with D. tertiolecta; in comparison, the freshwater microalgae reached between 22–23% by weight in the exponential phase, for the species N. oculata. The highest number of fatty acids observed in marine microalgae was by Soxhlet extraction in D. tertiolecta in both growth phases. The highest percentage of any fatty acid with this method was palmitic acid (61%) in the stationary phase of C vulgaris. The ultrasonication extraction method presented the highest percentages in the stationary phase of N. oculata and D. tertiolecta, palmitic acid (C16:0) showing the highest percentages (87 and 51%) in the exponential phase in both marine microalgae. In short, it was observed that the extraction method and solvent mixture could influence fatty acid profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Adam F, Abert-Vian M, Peltier G, Chemat F (2012) Solvent free ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465

    Article  CAS  PubMed  Google Scholar 

  • Alzate ME, Muñoz R, Rogalla F, Fdez-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410

    Article  CAS  Google Scholar 

  • Aratboni HA, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 18:178

    Article  Google Scholar 

  • Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Gonçalves LRB, Fernandes FAN, Farias WRL (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20:95–98

    Article  CAS  PubMed  Google Scholar 

  • Araujo GS, Silva JW, Viana CA, Fernandes FA (2019) Effect of sodium nitrate concentration on biomass and oil production of four microalgae species. Int J Sustain Energy 39:41–50

    Article  Google Scholar 

  • Behera B, Balasubramanian P (2021) Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresour Technol 340:125721

    Article  CAS  PubMed  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycological Studies, University of Texas IV:1–95

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Méndez JR, Hoyos-Concha JL (2018) Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Cienc Tecnol Agropecu 19:645–668

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Cao Y, Liu W, Xu X, Zhang H, Wang J, Xian M (2014) Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol Biofuels 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellanos IC, González-Peralta K, Pinzón-Torres SJ (2018) Microalgas como alternativa sostenible para la producción de biodiesel. Revista Ontare 6:83–109

    Google Scholar 

  • Chen W, Liu Y, Song L, Sommerfeld M, Hu Q (2020) Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res 51:102080

    Article  Google Scholar 

  • Chu FJ, Wan TJ, Pai TY, Lin HW, Liu SH, Huang CF (2020) Use of magnetic fields and nitrate concentration to optimize the growth and lipid yield of Nannochloropsis oculata. J Environ Manag 253:109680

    Article  CAS  Google Scholar 

  • de Carvalho JC, Magalhães AI Jr, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Aulestia DTM, de Souza Vandenberghe LP, Soccol VT, Soccol CR (2020) Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol 300:122719

    Article  PubMed  Google Scholar 

  • De Castro MDL, García-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  Google Scholar 

  • De Jesus SS, Ferreira GF, Moreira LS, Maciel MRW, Filho RM (2019) Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew Energ 143:130–141

    Article  Google Scholar 

  • De Morais EG, Murillo AM, Lens PNL, Ferrer I, Uggetti E (2022) Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp. Sci Total Environ 851:158337

    Article  PubMed  Google Scholar 

  • Ellison CR, Overa S, Boldor D (2019) Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer. Ultrason Sonochem 51:496–503

    Article  CAS  PubMed  Google Scholar 

  • Fawzy MA, Alharthi S (2021) Use of Response Surface Methodology in optimization of biomass, lipid productivity and fatty acid profiles of marine microalga Dunaliella parva for biodiesel production. Environ Technol Innov 22:101485

    Article  CAS  Google Scholar 

  • Ferreira AF, Dias APS, Silva CM, Costa M (2016) Effect of low frequency ultrasound on microalgae solvent extraction: Analysis of products, energy consumption and emissions. Algal Res 14:9–16

    Article  Google Scholar 

  • Ferrer-Álvarez YI, Ortega-Clemente LA, Pérez-Legaspi IA, Hernández-Vergara MP, Robledo-Narváez PN, Ríos-Leal E, Poggi-Varaldo HM (2015) Growth of Chlorella vulgaris and Nannochloropsis oculata in effluents of Tilapia farming of the productivities of fatty acids with potential in biofuels. Afr J Biotechnol 14:1710–1717

    Article  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Fulks W, Main K (1991) Rotifer and Microalgae Culture Systems – Proceedings of a US-Asia Workshop. The Oceanic Institute, Honolulu, p 364

  • García-Vaquero M, Rajauriab G, Tiwari B (2020) Conventional extraction techniques: Solvent extraction. In: Torres MD, Kraan S, Dominguez H (eds) Sustainable Seaweed Technologies. Elsevier, Amsterdam, pp 171–189

    Chapter  Google Scholar 

  • Gorgich M, Mata TM, Martins AA, Branco-Vieira M, Caetano NS (2020) Comparison of different lipid extraction procedures applied to three microalgal species. Energy Rep 6:477–482

    Article  Google Scholar 

  • Görög S (2005) Derivatization of analytes. In: Worsfold PJ, Townhend A, Poole CF (eds) Encyclopedia of Analytical Science, 2nd edn. Elsevier, Oxford, pp 263–273

    Chapter  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds -A brief review of recent work. Biotechnol Prog 27:597–613

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv 30:709–732

    Article  CAS  PubMed  Google Scholar 

  • Han D, Jia J, Li J, Sommerfeld M, Xu J, Hu Q (2017) Metabolic remodeling of membrane glycerolipids in the microalga Nannochloropsis oceanica under nitrogen deprivation. Front Mar Sci 4:1–15

    Article  CAS  Google Scholar 

  • Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Hu Q (2013) Environmental effects on cell composition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. John Wiley & Sons, Chichester, pp 114–122

    Chapter  Google Scholar 

  • Ido AL, de Luna MDG, Capareda SC, Maglinao AL Jr, Nam H (2018) Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction. Energy 157:949–956

    Article  CAS  Google Scholar 

  • Jay MI, Kawaroe M, Effendi H (2018) Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond. IOP Conf Ser: EarthEnviron Sci 141:012015

    Google Scholar 

  • Jiménez-Escobedo M, Castillo-Calderón A (2021) Microalgal biomass with high potential for biofuel production: Review. Sci Agropecuaria 12:265–282

    Article  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnunen HV, Koskinen PEP, Rintala J (2014) Mesophilic and thermophilic anaerobic laboratory-scale digestión of Nannochloropsis microalga residues. Bioresour Technol 15:314–322

    Article  Google Scholar 

  • Krishnamoorthy A, Rodriguez C, Durrant A (2023) Optimisation of ultrasonication pretreatment on microalgae Chlorella vulgaris & Nannochloropsis oculata for lipid extraction in biodiesel production. Energy 278:128026

    Article  CAS  Google Scholar 

  • Kumaran J, Poulose S, Joseph V, Singh ISB (2021) Enhanced biomass production and proximate composition of marine microalga Nannochloropsis oceanica by optimization of medium composition and culture conditions using response surface methodology. Anim Feed Sci Technol 271:114761

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  CAS  PubMed  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Lara-Menegazzo M, Graciano-Fonseca G (2019) Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renew Sust Energy Rev 107:87–107

    Article  Google Scholar 

  • Liyanaarachchi VC, Nishshanka GKSH, Sakarika M, Nimarshana PHV, Ariyadasa TU, Kornaros M (2021) Artificial neural network (ANN) approach to optimize cultivation conditions of microalga Chlorella vulgaris in view of biodiesel production. Biochem Eng J 173:108072

    Article  CAS  Google Scholar 

  • Ma XN, Chen TP, Yang B, Liu J, Chen F (2016) Lipid production from Nannochloropsis. Mar Drugs 14:61

    Article  Google Scholar 

  • Marques IM, Oliveira ACV, de Oliveira OMC, Sales EA, Moreira ITA (2021) A photobioreactor using Nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. Chemosphere 281:130775

    Article  CAS  PubMed  Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energy Rev 58:180–197

    Article  Google Scholar 

  • Morais W Jr, Gorgich M, Corrêa P, Martins A, Mata T, Caetano N (2020) Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture 528:735562

    Article  Google Scholar 

  • Moreno-Martínez P, Ortiz-Martínez VM, Sánchez-Segado S, Salar-García MJ, de los Ríos AP, Hernández-Fernández FJ, Lozano-Blanco LJ, Godínez C (2022) Deep eutectic solvents for the extraction of fatty acids from microalgae biomass: Recovery of omega-3 eicosapentaenoic acid. Sep Purif Technol 300:121842

    Article  Google Scholar 

  • Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123

    Article  Google Scholar 

  • Natarajan R, Ang WMR, Chen X, Voigtmann M, Lau R (2014) Lipid releasing characteristics of microalgae species through continuous ultrasonication. Bioresour Technol 158:7–11

    Article  CAS  PubMed  Google Scholar 

  • NREL (2016) Biodiesel Handling and Use Guidelines, 3rd edn. National Renewable Energy Laboratories, Oak Ridge

  • Nguyen TDP, Nguyen DH, Lim JW, Chang CK, Leong HY, Tran TNT, Vu TBH, Nguyen TTC, Show PL (2019) Investigation of the relationship between bacteria growth and lipid production cultivating of microalgae Chlorella vulgaris in seafood wastewater. Energies 12:2282

  • Nichols HW (1973) Growth media - freshwater. In: Stein JR (ed) Handbook of Phycological Methods. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Paniagua-Michel J (1989) Manual de metodologías y alternativas para el cultivo de microalgas. Cicese, México 93 p

  • Pereira S, Otero A (2019) Effect of light quality on carotenogenic and non-carotenogenic species of the genus Dunaliella under nitrogen deficiency. Algal Res 44:101725

    Article  Google Scholar 

  • Ranjan A, Patil C, Moholkar SV (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  • Rezasoltani S, Vahabzadeh F, Shariatmadari Z, Ghanati F (2019) Cyanobacterial extract as a source of nutrients for mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata. Algal Res 39:101480

    Article  Google Scholar 

  • Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Omar R, Khezri R, Elgharbawy AA (2021) Ionic liquid-based microwave-assisted extraction of lipid and eicosapentaenoic acid from Nannochloropsis oceanica biomass: experimental optimization approach. J Appl Phycol 33:2015–2029

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini TMR (2009) Microalgae for Oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotech 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Sehl A, Couëdelo L, Fonseca L, Vaysse C, Cansell M (2018) A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes. Food Chem 251:1–8

    Article  CAS  PubMed  Google Scholar 

  • Shahi T, Zonouzi A, Beheshti B, Almasi M (2020) Comparison of four lipid extraction methods from microalgae Dunaliella sp. for biodiesel production. Iran J Chem Chem Eng 39:371–378

  • Shen XF, Chu FF, Lam PKS, Zeng RJ (2015) Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res 81:224–230

    Article  Google Scholar 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renew Sustain Energy Rev 81:743–755

    Article  CAS  Google Scholar 

  • Soxhlet F (1879) Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytech J 232:461–465

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sui Y, Muys M, Van de Waal DB, D’Adamo S, Vermeir P, Fernandes TV, Vlaeminck SE (2019) Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresour Technol 287:121398

    Article  CAS  PubMed  Google Scholar 

  • Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, Show PL (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnol Adv 41:107536

    Article  CAS  PubMed  Google Scholar 

  • Tran NAT, Padula MP, Evenhuis CR, Commault AS, Ralph PJ, Tamburic B (2016) Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata. Algal Res 19:1–11

    Article  Google Scholar 

  • Tripathi R, Gupta A, Thakur IS (2019) An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1. Renew Energ 135:617–625

    Article  CAS  Google Scholar 

  • Vasistha S, Khanra A, Clifford M, Rai MP (2021) Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renew Sust Energy Rev 137:110498

    Article  CAS  Google Scholar 

  • Villagracia ARC, Ong HL (2022) Unit operations applied to drying microalgal biomass. In: Jacob-Lopes E, Zepka LQ, Severo IA, Maroneze MM (eds) 3rd Generation Biofuels Disruptive Technologies to Enable Commercial Production. Woodhead Publishing, Cambridge, pp 213–224

    Google Scholar 

  • Wang Q, Oshita K, Takaoka M, Shiota K (2021) Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae. Bioresour Technol 329:124892

    Article  CAS  PubMed  Google Scholar 

  • Watanabe MM (2005) Freshwater culture media. In: Anderson RA (ed) Algal Culturing Techniques. Elsevier, London, pp 13–20

    Google Scholar 

  • Wei L, Mastalerz M, Schimmelmann A, Chen Y (2014) Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturnig organic-rich shales. Int J Coal Geol 132:38–50

    Article  CAS  Google Scholar 

  • Zafar AM, Javed MA, Aly Hassan A, Mehmood K, Sahle-Demessie E (2021) Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity. J Water Process Eng 44:102382

    Article  Google Scholar 

  • Zhou X, Xu K, Chang W, Qu Y, Li Y (2021) Rapid extraction of lipid from wet microalgae biomass by a novel buoyant beads and ultrasound assisted solvent extraction method. Algal Res 58:102431

    Article  Google Scholar 

  • Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, Xiao J, Barba FJ (2022) Extraction of lipids from microalgae using classical and innovative approaches. Food Chem 384:132236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council of Science and Technology (CONACyT) for the scholarship granted to F.V. Pérez-Barradas, PhD student. We also extend our gratitude for the English review and style correction to Patricia Margaret Hayward-Jones MSc, Guest Professor at TecNM-ITVer.

Funding

The authors thank the National Technological Institute of Mexico (TecNM) for the support and funding of this research through the TecNM project: 8130.20-P.

Author information

Authors and Affiliations

Authors

Contributions

F.V. Pérez-Barradas: Performing the experiments, data/evidence collection, and original draft preparation, data statistic treatment, methodology, and formal analysis application of statistical, mathematical. L.A. Ortega-Clemente: Conceptualization ideas, responsible for the management and coordination for the planning and execution of the research activity, formulation or evolution of general research objectives and goals, methodology, application of formal analysis of statistics, mathematics, preparation of the original draft, supervision, review and editing. Responsible for ensuring descriptions are accurate and in agreement with all authors, corresponding author. I.A. Pérez-Legaspi: Manuscript review and edition, contributions to the published work, methodology. M.I. Jiménez-García: Manuscript review and edition, data statistic treatment. A.A. Huerta Heredia: Manuscript review edition, methodology. R. Quintana-Castro: Manuscript review edition, methodology.

Corresponding author

Correspondence to L. A. Ortega-Clemente.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest with other people or organizations that may influence this research work. There are no financial relationships with people or organizations that could inappropriately bias our work. That we have no commercial or proprietary interest in any product or concept discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Barradas, F.V., Ortega-Clemente, L.A., Pérez-Legaspi, I.A. et al. Variation in the fatty acid composition of microalgal lipids due to the effect of the extraction method. J Appl Phycol 35, 2851–2863 (2023). https://doi.org/10.1007/s10811-023-03092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03092-y

Keywords

Navigation