Skip to main content
Log in

Production of glycogen, PHB, biohydrogen, NAD(P)H, and proteins in Synechocystis sp. PCC 6803 disrupted in metabolically linked biosynthetic pathway(s)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Under nitrogen deprivation (-N), cell growth and protein synthesis of Synechocystis sp. PCC 6803 were inhibited but production of glycogen (GL) and poly-3-hydroxybutyrate (PHB) was enhanced, indicating the importance of -N for increasing the production of such bioproducts. Upon transition from N-deprived to N-supplied medium, GL and PHB were utilized for cell growth recovery. Here, we systematically disrupted the biosynthesis of GL, PHB and/or H2 and examined changes on amount of the remaining bioproducts. Disruption of PHB synthesis increased H2 evolution rate up to 1.7-fold under -N. Disruption of GL synthesis increased PHB level up to 1.4-fold, but did not affect H2 production under -N. Cellular NAD(P)H was elevated 1.6-fold after the disruption of GL synthesis, and by 3.6-fold after the disruption of both GL and PHB synthesis under -N. The double disruption of GL and PHB, GL and H2, or PHB and H2, significantly affected the initial (day 0–4) growth rate upon switching from -N to nitrogen repletion (+N). Under -N to +N condition at day 0–4, the disrupted synthesis of both GL and PHB significantly decreased the levels of total proteins, phycobilins, carotenoids, and chlorophyll a by 32%, 44%, 47%, and 59%, respectively. Thus, both PHB and GL storage are likely required for normal growth, as well as for the maximal production of proteins and photosynthetic pigments upon growth recovery under nitrogen repletion. The results demonstrated that the cyanobacterial production of GL, PHB, H2, NAD(P)H, and proteins can be affected by the disruption of metabolically connected biosynthetic pathway(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Antal T, Oliveira P, Lindblad P (2006) The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. Int J Hydrogen Energy 31:1439-1444

    Article  CAS  Google Scholar 

  • Antal T, Kurkela J, Parikainen M, Kårlund A, Hakkila K, Tyystjärvi E, Tyystjärvi T (2016) Roles of group 2 sigma factors in acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to nitrogen deficiency. Plant Cell Physiol 57:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    Article  CAS  PubMed  Google Scholar 

  • Burrows EH, Wong W-K, Fern X, Chaplen FWR, Ely RL (2009) Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods. Biotechnol Prog 25:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damrow R, Maldener I, Zilliges Y (2016) The multiple functions of common microbial carbon polymers, glycogen and PHB, during stress responses in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 7:966

    Article  PubMed  PubMed Central  Google Scholar 

  • Doello S, Klotz A, Makowka A, Gutekunst K, Forchhammer K (2018) A specific glycogen mobilization strategy enables rapid awakening of dormant cyanobacteria from chlorosis. Plant Physiol 177:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan DB (1955a) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Eckert C, Boehm M, Carrieri D, Yu J, Dubini A, Nixon PJ, Maness PC (2012) Genetic analysis of the Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 reveals subunit roles in association, assembly, maturation, and function. J Biol Chem 287:43502–43515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englund E, Shabestary K, Hudson EP, Lindberg P (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 49:164–177

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Xu X (2006) The functional divergence of two glgP homologues in Synechocystis sp. PCC 6803. FEMS Microbiol Lett 260:201–209

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043

    Article  PubMed  CAS  Google Scholar 

  • Gutthann F, Egert M, Marques A, Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1767:161–169

    Article  CAS  Google Scholar 

  • Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: Excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai K, Nojo M, Sato Y, Tsuzuki M, Sato N (2019) Contribution of protein synthesis depression to poly-β-hydroxybutyrate accumulation in Synechocystis sp. PCC 6803 under nutrient-starved conditions. Sci Rep 9:19944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewbai-Ngam A, Incharoensakdi A, Monshupanee T (2016) Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol 212:342–347

    Article  CAS  PubMed  Google Scholar 

  • Khetkorn W, Lindblad P, Incharoensakdi A (2010) Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012. Int J Hydrogen Energy 35:12767–12776

    Article  CAS  Google Scholar 

  • Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, Sobotka R, Jendrossek D, Hess Wolfgang R, Forchhammer K (2016) Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol 26:2862–2872

    Article  CAS  PubMed  Google Scholar 

  • Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9:e1003081

  • Koch M, Doello S, Gutekunst K, Forchhammer K (2019) PHB is produced from glycogen turn-over during nitrogen starvation in Synechocystis sp. PCC 6803. Int J Mol Sci 20

  • Koch M, Berendzen KW, Forchhammer AK (2020) On the role and production of polyhydroxybutyrate (PHB) in the cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 10

  • Kufryk GI, Sachet M, Schmetterer G, Vermaas WF (2002) Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett 206:215–219

    Article  CAS  PubMed  Google Scholar 

  • Lopez CV, Garcia Mdel C, Fernandez FG, Bustos CS, Chisti Y, Sevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Luan G, Qi Y, Wang M, Li Z, Duan Y, Tan X, Lu X (2015) Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnol Biofuels 8:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  CAS  PubMed  Google Scholar 

  • Mills LA, McCormick AJ, Lea-Smith DJ (2020) Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 40

  • Mimuro M, Kikuchi H (2003) Antenna systems and energy transfer in Cyanophyta and Rhodophyta. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Springer, Dordrecht, pp 281–306

    Chapter  Google Scholar 

  • Mok YK, Clark DR, Kam KM, Shaw PC (1991) BsiY I, a novel thermophilic restriction endonuclease that recognizes 5’ CCNNNNNNNGG 3’ and the discovery of a wrongly sequenced site in pACYC177. Nucleic Acids Res 19:2321–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monshupanee T, Incharoensakdi A (2014) Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 116:830–838

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Srivastava S, Sherman LA (2014) Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Mol Microbiol 91:79–97

    Article  CAS  Google Scholar 

  • Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res 38 (Database issue):D379–381

  • Namakoshi K, Nakajima T, Yoshikawa K, Toya Y, Shimizu H (2016) Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J Biotechnol 239:13–19

    Article  CAS  Google Scholar 

  • Orthwein T, Scholl J, Spät P, Lucius S, Koch M, Macek B, Hagemann M, Forchhammer K (2021) The novel PII-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria. Proc Natl Acad Sci 118:e2019988118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda B, Mallick N (2007) Enhanced poly-beta-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198

    Article  CAS  PubMed  Google Scholar 

  • Prentki P, Binda A, Epstein A (1991) Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene 103:17–23

    Article  CAS  PubMed  Google Scholar 

  • Richaud C, Zabulon G, Joder A, Thomas J-C (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Sukkasam N, Incharoensakdi A, Monshupanee T (2021) Disruption of hydrogen-gas synthesis enhanced the cellular levels of NAD(P)H, glycogen, poly(3-hydroxybutyrate), and photosynthetic pigments under specific nutrient condition(s) in cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 63:135–147

  • Touloupakis E, Cicchi B, Torzillo G (2015) A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. Biotechnol Biofuels 8:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsang TK, Roberson RW, Vermaas WFJ (2013) Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. Photosynth Res 118:37–49

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan R, Incharoensakdi A (2018) Disruption of polyhydroxybutyrate synthesis redirects carbon flow towards glycogen synthesis in Synechocystis sp. PCC 6803 overexpressing glgC/glgA. Plant Cell Physiol 59:2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu W, Xin C, Zheng Y, Cheng Y, Sun S, Li R, Zhu X-G, Dai SY, Rentzepis PM, Yuan JS (2016) Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci 113:14225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watzer B, Forchhammer K (2018) Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 84

  • Welkie DG, Sherman DM, Chrisler WB, Orr G, Sherman LA (2013) Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822. Photosynth Res 118:25–36

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AR (1994) The Spectral determination of chlorophylls a and b, as well as Total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol 31:3527–3536

    Article  CAS  Google Scholar 

  • Xie J, Zhou J, Zhang H, Li Y (2011) [Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp. PCC 6803]. Sheng wu gong cheng xue bao = Chin J Biotechnol 27:998–1004

  • Xiong W, Brune D, Vermaas WF (2014) The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786–796

    Article  CAS  Google Scholar 

  • Zavřel T, Sinetova MA, Červený J (2015) Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protoc 5:e1467

    Article  Google Scholar 

  • Zhou J, Zhang F, Meng H, Zhang Y, Li Y (2016) Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 38:217–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Research Council of Thailand (NRCT): NRCT5-RSA63001-21 (to T.M.), and the Royal Golden Jubilee Ph.D. Program: PHD/0011/2560 (to J.K. and T.M.). J.K. and T.M. was supported for graduate-student research by the 90th Anniversary Fund (Ratchadaphiseksomphot Endowment Fund) of Chulalongkorn University grant (GCUGR1125633052D). The authors thank Dr. Robert Butcher for critical proofreading.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and T.M. developed the research questions and designed the experiments with the input from A.I.; J.K. mainly conducted the experiments; O.P., N.S., and T.M. generated the ΔG and ΔH strains; J.K. and T.M. analyzed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tanakarn Monshupanee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaewbai-ngam, J., Sukkasam, N., Phoraksa, O. et al. Production of glycogen, PHB, biohydrogen, NAD(P)H, and proteins in Synechocystis sp. PCC 6803 disrupted in metabolically linked biosynthetic pathway(s). J Appl Phycol 34, 1983–1995 (2022). https://doi.org/10.1007/s10811-022-02759-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02759-2

Keywords

Navigation