Skip to main content
Log in

Transcriptome analysis of Gracilariopsis lemaneiformis at low temperature

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Gracilariopsis lemaneiformis is an economically relevant red macroalga whose cultivation is affected by temperature. This study investigated the molecular mechanism of G. lemaneiformis at low temperature. Transcriptomes were obtained after the algae were treated at 5 °C for 6 and 24 h. Among the total clean reads of the 3 groups, 35,324 unigenes were found, of which 81.22% were annotated in at least 1 database (Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and GO). A total of 2674 and 3855 differentially expressed genes were found, respectively, after 6 and 24 h of low-temperature treatment at 5 °C. The results of differentially expressed gene analysis by GO and KEGG enrichments showed that the expression of genes related to many pathways changed at low temperatures, such as glutathione metabolism, biosynthesis of unsaturated fatty acids, alpha-linolenic acid metabolism, base excision repair, and photosynthesis. The expression of key genes involved in unsaturated fatty acid synthesis and basic excision repair pathways was significantly upregulated after 6-h low-temperature treatment; however, the expression of key genes involved in the glutathione synthesis pathway was promoted after 24 h. In addition, the expression of some heat shock proteins expected to play an important role in cold resistance was significantly upregulated under low-temperature stress. In summary, the genes related to stress response were induced, while the genes related to photosynthesis were suppressed, indicating that the growth of G. lemaneiformis was affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Chen L, Pan YF, Li HD, Jia XY, Guo YL, Luo JS, Li XH (2020a) Methyl jasmonate alleviates chilling injury and keeps intact pericarp structure of pomegranate during low temperature storage. Food Sci Technol Int 27:22–31

    Article  PubMed  Google Scholar 

  • Chen WZ, Xu D, Wang LG, Meng L, Du H, Zhang XC (2009) A preliminary study on the economic characters and agaric properties of two new Gracilariopsis lemaneiformis strains. Period Ocean Univ China 39:437–442

    Google Scholar 

  • Chen Q, Yu FF, Xie Q (2020b) Insights into endoplasmic reticulum-associated degradation in plants. New Phytol 226:345–350

    Article  PubMed  Google Scholar 

  • Feng H, Wang S, Dong DF, Zhou RY, Wang H (2020) Arabidopsis ubiquitin-conjugating enzymes ubc7, ubc13, and ubc14 are required in plant responses to multiple stress conditions. Plants 9:723

    Article  CAS  PubMed Central  Google Scholar 

  • Fu XP, Wang DC, Yin XL, Du PC, Kan BA (2014) Time Course Transcriptome Changes in Shewanella algae in Response to Salt Stress. PLoS ONE 9:e96001

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Leija JA, Hernández-Garibay E, Pacheco-Ruíz I, Guardado-Puentes J, Espinoza-Avalos J, López-Vivas JM, Bautista-Alcantar J (2009) Optimization of the yield and quality of agar from Gracilariopsis lemaneiformis (Gracilariales) from the Gulf of California using an alkaline treatment. J Appl Phycol 21:321–326

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He BX, Hou LL, Dong MM, Shi JW, Huang XY, Ding YT, Cong XM, Zhang F, Zhang XC, Zang XN (2018) Transcriptome analysis in haematococcus pluvialis: astaxanthin induction by high light with acetate and Fe2+. Int J Mol Sci 19:175

    Article  PubMed Central  Google Scholar 

  • Huner NPA, Bode R, Dahal K, Busch FA, Possmayer M, Szyszka B, Rosso D, Ensminger I, Krol M, Ivanov AG, Maxwell DP (2013) Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 91:127–136

    Article  CAS  Google Scholar 

  • Hegde RS, Ploegh HL (2010) Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 22:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XY, Zang XN, Wu F, Jin YM, Wang HT, Liu C, Ding YT, He BX, Xiao DF, Song XW, Liu Z (2017) Transcriptome sequencing of Gracilariopsis lemaneiformis to analyze the genes related to optically active phycoerythrin synthesis. PLoS One 12:12e170855

    Google Scholar 

  • Jin M, Liu H, Hou Y, Chan Z, Di W, Li L, Zeng RY (2017) Preparation, characterization and alcoholic liver injury protective effects of algal oligosaccharides from Gracilaria lemaneiformis. Food Res Int 100:186–195

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Duan YF, Wang L, Wang J, Zheng YH (2014) Reducing chilling injury of Loquat fruit by combined treatment with hot air and methyl jasmonate. Food Bioproc Technol 7:2259–2266

    Article  CAS  Google Scholar 

  • Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, Choi IG (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86:227–234

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu JG, Zhang LT, Pang T (2016a) Effects of low temperature stress on the antioxidant system and photosynthetic apparatus of Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Mar Biol Res 12:1064–1077

    Article  Google Scholar 

  • Li QQ, Zhang LT, Pang T, Liu JG (2019) Comparative transcriptome profiling of Kappaphycus alvarezii (Rhodophyta, Gigartinales) inresponse to two extreme temperature treatments: an RNA-seq-based resource for photosynthesis research. Eur J Phycol 54:162–174

    Article  CAS  Google Scholar 

  • Li QY, Lei S, Du KB, Li LZ, Pang XF, Wang ZC, Wei M, Fu S, Hu LM, Xu L (2016) RNA-seq based transcriptomic analysis uncovers alpha-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 6

  • Lim EL, Siow RS, Rahim R, Ho CL (2016) Global transcriptome analysis of Gracilaria changii (Rhodophyta) in response to agarolytic enzyme and bacterium. Mar Biotechnol 18:189–200

    Article  CAS  Google Scholar 

  • Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY (2019) Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. Bioresour Technol 289:121720

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maikova A, Zalutskaya Z, Lapina T, Ermilova E (2016) The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. J Plant Physiol 204:85–91

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    Article  CAS  PubMed  Google Scholar 

  • Nah G, Lee M, Kim DS, Rayburn AL, Voigt T, Lee DK (2016) Transcriptome analysis of Spartina pectinata in response to freezing stress. PLoS ONE 11:e0152294

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin H, Hong SJ, Yoo C, Han MA, Lee H, Choi HK, Cho S, Lee CG, Cho BK (2016) Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci Rep 6:37770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N (2010) Phylogenomic and structural modeling analyses of the PsbP superfamily reveal multiple small segment additions in the evolution of photosystem II-associated PsbP protein in green plants. Mol Phylogenet Evol 56:176–186

    Article  CAS  PubMed  Google Scholar 

  • Sun PP, Mao YX, Li GY, Cao M, Kong FN, Wang L, Bi GQ (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun PP, Tang XH, Bi GQ, Xu KP, Kong FN, Mao YX (2018) Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses. Mar Genomics 43:43–49

    Article  PubMed  Google Scholar 

  • Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren M, Salzberg S, Wold B, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FJ, Wang CB, Zou TL, Xu NJ, Sun X (2017) Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance. PLoS ONE 12:e176531

    Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang WL, Li HQ, Lin XZ, Yang SJ, Wang ZK, Fang BS (2015) Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro. Sci Rep 5:17099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Xu Y, Chen TX, Xing L, Xu K, Xu Y, Ji DH, Chen CS, Xie CT (2019) Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. Sci Total Environ 662:168–179

    Article  CAS  PubMed  Google Scholar 

  • Xu FQ, Xue HW (2019) The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ 42:2931–2944

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Chai ZY, Wang Q, Chen WZ, He ZL, Jiang SJ (2015) Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res 9:236–244

    Article  Google Scholar 

  • Zhang XH, Sheng JP, Li FJ, Meng DM, Shen L (2012) Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biol Technol 64:160–167

    Article  CAS  Google Scholar 

  • Zhang YR, Wang XM, Shan TF, Pang SJ, Xu NJ (2019) Transcriptome profiling of the meristem tissue of Saccharina japonica (Phaeophyceae, Laminariales) under severe stress of copper. Mar Genomics 47:100671

    Article  PubMed  Google Scholar 

  • Zhang ZH, Qu CF, Zhang KJ, He YY et al (2020) Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr Microbiol 30:3330–3341.e7

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (grant no. 31872555), Key Program of Science and Technology Innovation Ningbo (2019B10009), and China Agriculture Research System (CARS-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Zang.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Zang, X., Shui, G. et al. Transcriptome analysis of Gracilariopsis lemaneiformis at low temperature. J Appl Phycol 33, 4035–4050 (2021). https://doi.org/10.1007/s10811-021-02514-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02514-z

Keywords

Navigation