Skip to main content
Log in

Efficient removal of dyes from seawater using as biosorbent the dead and living biomass of the microalga Phaeodactylum tricornutum: equilibrium and kinetics studies

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Dyes are used in many applications with their consequent discharge into aquatic environments. Alternative methods of pollutant removal, such as biosorption, are currently necessary to achieve an efficient, low-cost, and environmentally friendly process. The biomasses, living and dead, from the microalga Phaeodactylum tricornutum were studied to determine their ability to remove three dyes, Methylene Blue, Crystal Violet and Safranin from seawater. The removal properties were determined as a function of contact time, initial dye concentrations, and pH, and characterized with the determination of the point of zero charge (pHPZC) and FTIR. The highest removal capacity was obtained with crystal violet (66.4 mg g−1), without significant differences between both biomasses and following a pseudo-fourth order kinetics, indicating a high affinity for said dye. Maximum removal capacity for methylene blue was 18.9 mg g−1 with significant differences between both biomasses until the concentration of 10 mg L−1, the dead biomass being more effective since this dye would present difficulties to enter the living cells. The kinetics was of pseudo-third order. Safranin obtained a removal capacity of 19.6 mg g−1 with also significant differences between both biomasses up to a concentration < 10 mg L−1, but with living biomass being more effective and a sigmoidal kinetics, indicating that this dye would more easily enter living cells. Photodegradation of these dyes and isotherms were also analyzed to properly characterize the process. The results demonstrated that the biomass of P. tricornutum eliminated efficiently these dyes from a solution with high ionic load (seawater).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773

    Article  CAS  PubMed  Google Scholar 

  • AitAhsaine H, Zbair M, Anfar Z, Naciri Y, El haouti R, El Alem N, Ezahri M (2018) Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Mater Today Chem 8:121–132

    Article  CAS  Google Scholar 

  • Albadarin AB, Mangwandi C (2015) Mechanisms of Alizarin Red S and Methylene Blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J Env Manage 164:86–93

    Article  CAS  Google Scholar 

  • Ali H, Muhammad S (2008) Biosorption of Crystal Violet from water on leaf biomass of Calotropis procera. Environ Sci Technol 1:143–150

    Article  CAS  Google Scholar 

  • Asgher M (2012) Biosorption of reactive dyes: A review. Water Air Soil Pollut 223:2417–2435

    Article  CAS  Google Scholar 

  • Banat I, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Bhattacharyya K, Sharma A (2005) Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigments 65:51–59

    Article  CAS  Google Scholar 

  • Bouraada M, Lafjah M, Ouali MS, de Menorval LC (2008) Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite. J Hazard Mater 153:911–918

    Article  CAS  PubMed  Google Scholar 

  • Bouzikri S, Ouasfi N, Benzidia N, Salhi A, Bakkas S, Khamliche L (2020) Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions. Environ Sci Pollut Res Int 27:33636–33648

    Article  CAS  PubMed  Google Scholar 

  • Caparkaya D, Cavas L (2008) Biosorption of methylene blue bya brown alga Cystoseira barbatula Kutzing. Acta Chim Slov 55:547–553

    CAS  Google Scholar 

  • Chakrabarti S, Dutta B (2005) On the adsorption and diffusion of methylene blue in glass fibers. J Colloid Interf Sci 286:807–811

    Article  CAS  Google Scholar 

  • Chen CY, Chang JC, Chen AH (2011) Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles. J Hazard Mater 185:430–441

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hu J, Wang J (2020) Biosorption of uranium by immobilized Saccharomyces cerevisiae. J Environ Radioact 213:106158

  • Chowdhury S, Das P (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohyd Polym 86:1533–1541

    Article  CAS  Google Scholar 

  • Coelho CM, de Andrade JR, da Silva MGC, Vieira MGA (2020) Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. Environ Sci Pollut Res Int 27:16599–16611

  • Daneshvar E, Zarrinmehr MJ, Hashtjin AM, Farhadian O, Bhatnagar A (2018) Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Bioresour Technol 268:523–530

    Article  CAS  PubMed  Google Scholar 

  • de Araujo TP, Tavares FO, Vareschini DT, Barros M (2020) Biosorption mechanisms of cationic and anionic dyes in a low-cost residue from brewer’s spent grain. Environ Technol 1–16

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  PubMed  Google Scholar 

  • El-Sikaily A, Khaled A, El Nemr A, Abdelwahab O (2006) Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. J Chem Ecol 22:149–157

    Article  CAS  Google Scholar 

  • El Haddad M, Slimani R, Rachid M, Rachid L, Rafqah S, Lazar S (2013) Evaluation of potential capability of calcined bones on the biosorption removal efficiency of safranin as cationic dye from aqueous solutions. J Taiwan Inst Chem E 44:13–18

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Franco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environ Sci Pollut Res Int 27:11184–11194

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Tech Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2018) Biosorption of cationic dyes by Para chestnut husk (Bertholletia excelsa). Water Sci Technol 77:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res Int 27:20831–20843

    Article  CAS  PubMed  Google Scholar 

  • Grand View Research I (2017) Dyes & Pigments Market Analysis By Product [Dyes (Reactive, Vat, Acid, Direct, Disperse), Pigments (Organic, Inorganic)], By Application (Dyes, Pigments), And Segment Forecasts, 2018 - 2025. Grand View Research, Inc., Report Report ID: GVR-1–68038–545–8, p 130

  • Grassi P, Reis C, Drumm FC, Georgin J, Tonato D, Escudero LB, Kuhn R, Jahn SL, Dotto GL (2019) Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Sci Technol 79:709–717

    Article  CAS  PubMed  Google Scholar 

  • Guler U, Ersan M, Tuncel E, Dügenci F (2015) Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp. Process Saf Environ 99:194–206

    Article  CAS  Google Scholar 

  • Gurses A, Doğar Ç, Yalçin M, Açıkyıldız M, Bayrak R, Karaca S(2006) The Adsorption kinetics of the cationic dye, methylene blue, onto clay. J Hazard Mater 131:217–228

  • Gurusamy A, Juang R-S, Lee D-J (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274

    Article  Google Scholar 

  • Herrero C, Cid A, Fábregas J, Abalde J (1991) Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media. Aquacult Eng 10:99–110

    Article  Google Scholar 

  • Huang H, Jia Q, Jing W, Dahms HU, Wang L (2020) Screening strains for microbial biosorption technology of cadmium. Chemosphere 251:126428

    Article  CAS  PubMed  Google Scholar 

  • Işikver Y (2017) Removal of some cationic dyes from aqueous solution by acrylamide- or 2-hydroxyethyl methacrylate-based copolymeric hydrogels. Fiber Polym 18:2070–2078

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: Recent advances and future potential. Environ Int 35:127–141

    Article  CAS  PubMed  Google Scholar 

  • Khattri S, Singh M (2000) Colour removal from synthetic dye waste water using a bioadsorbent. Water Air Soil Pollut 120:283–294

    Article  CAS  Google Scholar 

  • Kumar V, Sivanesan S (2005) Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J Hazard Mater 123:288–292

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of Methylene Blue onto fly ash. J Colloid Interf Sci 284:14–21

    Article  CAS  Google Scholar 

  • Lebron YAR, Moreira VR, de Souza Santos LV (2021)Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environ Technol 42:279–297

  • Lee KY, Lee SH, Lee JE, Lee SY (2019) Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. J Env Manage 233:83–88

    Article  CAS  Google Scholar 

  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290

    Article  Google Scholar 

  • Madhavakrishnan S, Manickavasagam K, Vasanthakumar R, Rasappan K, Mohanraj R, Pattabhi S (2009) Adsorption of crystal violet dye from aqueous solution using Ricinus communis Pericarp carbon as an adsorbent. J Chem 6:1109–1116

    CAS  Google Scholar 

  • Malarvizhi R, Ho Y-S (2010) The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination 264:97–101

    Article  CAS  Google Scholar 

  • Malekbala M, Hosseini S, Yazdi S, Soltani S, MalekbalaM, (2012) The study of the potential capability of sugar beet pulp on the removal efficiency of two cationic dyes. Chem Eng Res Des 90:704–712

    Article  CAS  Google Scholar 

  • Mana M, Ouali MS, de Menorval LC (2007) Removal of basic dyes from aqueous solutions with a treated spent bleaching earth. J Colloid Interface Sci 307:9–16

    Article  CAS  PubMed  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process–a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parab H, Sudersanan M, Shenoy N, Pathare T, Vaze B (2009) Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean-Soil Air Water 37:963–969

    Article  CAS  Google Scholar 

  • Pathak VV, Kothari R, Chopra AK, Singh DP (2015) Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manage 163:270–277

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Li D, Ye J, Xu H, Xie W, Zhang Y, Wu M, Xu L, Liang Y, Liu W (2019) Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper. J Environ Manage 235:224–230

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: Current practices and perspectives. J Biochem Tech 3:299–304

    CAS  Google Scholar 

  • Reddy S, Osborne JW (2020) Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. Water Environ Res. https://doi.org/10.1002/wer.1319

  • Rehman MSU, Kim I, Han J-I (2012) Adsorption ofmethylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr Polym 90:1314–1322

  • Sabir JSM, Theriot EC, Manning SR, Al-Malki AL, Khiyami MA, Al-Ghamdi AK, Sabir MJ, Romanovicz DK, Hajrah NH, El Omri A, Jansen RK, Ashworth MP (2018) Phylogenetic analysis and a review of the history of the accidental phytoplankter, Phaeodactylum tricornutum Bohlin (Bacillariophyta). PLoS ONE 13(6):e0196744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2013) Decolorisation of aqueous dye solutions by low-cost adsorbents: a review. Color Technol 129:85–108

    Article  CAS  Google Scholar 

  • Santaeufemia S, Torres E, Mera R, Abalde J (2016) Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater 320:315–325

    Article  CAS  PubMed  Google Scholar 

  • Santaeufemia S, Torres E, Abalde J (2018) Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J Appl Phycol 30:471–482

    Article  CAS  Google Scholar 

  • Santaeufemia S, Abalde J, Torres E (2019) Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: Kinetic and equilibrium studies. J Hazard Mater 369:674–683

    Article  CAS  PubMed  Google Scholar 

  • Sedlakova-Kadukova J, Kopcakova A, Gresakova L, Godany A, Pristas P (2019) Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol Environ Saf 167:204–211

    Article  CAS  PubMed  Google Scholar 

  • Shariati S, Faraji M, Yamini Y, Rajabi A (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165

    Article  CAS  Google Scholar 

  • Sharma YC, Upadhyay S (2009) Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels 23:2983–2988

    Article  CAS  Google Scholar 

  • Shoueir K, El-Sheshtawy H, Misbah M, El-Hosainy H, El-Mehasseb I, El-Kemary M (2018) Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@MnFe2O4. Carbohydr Polym 197:17–28

    Article  CAS  PubMed  Google Scholar 

  • Silva F, Nascimento L, Brito M, da Silva K, Paschoal W Jr, Fujiyama R (2019) Biosorption of Methylene Blue dye using natural biosorbents made from weeds. Materials (Basel) 12(15):2486

    Article  CAS  Google Scholar 

  • Singh SN (ed) (2014) Microbial degradation of synthetic dyes in wastewaters. Environmental Science. Springer, Cham

  • Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84

    Article  CAS  Google Scholar 

  • Tabaraki R, Sadeghinejad N (2017) Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium: optimization, kinetic and isotherm studies. Water Sci Technol 75:2631–2638

    Article  CAS  PubMed  Google Scholar 

  • Tan IAW, Hameed B, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127:111–119

    Article  CAS  Google Scholar 

  • Torres E (2020) Biosorption: A review of the latest advances. Processes 8:1584–1607

    Article  CAS  Google Scholar 

  • Torres E, Cid A, Herrero C, Abalde J (1998) Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol 63:213–220

    Article  CAS  Google Scholar 

  • Ubando AT, Africa ADM, Maniquiz-Redillas MC, Culaba AB, Chen WH, Chang JS (2020) Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J Hazard Mater 402:123431

    Article  PubMed  CAS  Google Scholar 

  • van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Res 39:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Weyermann C, Kirsch D, Vera CC, Spengler B (2009) Evaluation of the photodegradation of crystal violet upon light exposure by mass spectrometric and spectroscopic methods. J Forensic Sci 54:339–345

    Article  CAS  PubMed  Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Xing Y, Liu S, Hao X, Chen W, Huang Q (2020) Characterization of Cd2+ biosorption by Pseudomonas sp. strain 375, a novel biosorbent isolated from soil polluted with heavy metals in Southern China. Chemosphere 240:124893

    Article  CAS  PubMed  Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Gong WQ, Li YB, Chen SH, Yang DJ, Bai CP, Liu XF, Xu N (2011) Biosorption of Methylene Blue onto spent corncob substrate: kinetics, equilibrium and thermodynamic studies. Water Sci Technol 63:2775–2780

    Article  CAS  PubMed  Google Scholar 

  • Zusková E, Máchová J, Svobodova Z, Vesely T (2007) Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Vet Med-Czech 52:527–539

    Article  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Spanish “Ministerio de Economía, Industria y Competitividad” (CTM2017-88668-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Torres.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 440 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santaeufemia, S., Abalde, J. & Torres, E. Efficient removal of dyes from seawater using as biosorbent the dead and living biomass of the microalga Phaeodactylum tricornutum: equilibrium and kinetics studies. J Appl Phycol 33, 3071–3090 (2021). https://doi.org/10.1007/s10811-021-02513-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02513-0

Keywords

Navigation