Skip to main content
Log in

The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biological capture of CO2 using microalgae is promising approach for mitigation of excess carbon. The aim here was to study the influence of different CO2 (10, 20, and 30% v/v) concentrations as a carbon source on two indigenous isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33) under adjusted pH. Algal growth improved at elevated concentrations of CO2. Resistance response patterns to elevated CO2 concentrations in contents of all the storage products, proline, malondialdehyde (MDA), H2O2, and enzymatic antioxidant activities were different in the studied isolates at different CO2 concentrations. The protein and lipids were high at 10% CO2 concentration, but carbohydrates decreased at 10% CO2 concentration, followed by decrease in protein and lipids and increase in the amount of carbohydrates at 20 and 30% CO2 concentrations. MDA and H2O2 increased significantly at 20 and 30% CO2 concentrations in both isolates, but since MDA in ABRIINW-SH33 isolate was less than that in ABRIINW-CH2 isolate, ABRIINW-SH33 had a higher tolerance to high CO2 concentrations. The increases in catalase (CAT), polyphenol oxidase (PPO), superoxide dismutase (SOD), and proline are the signs of oxidative stress under elevated CO2 concentrations as well as the antioxidative responses in the isolates. In addition, quantitative real-time (qRT)–polymerase chain reaction (PCR) analysis confirmed the biochemical results that elevated CO2 concentration inducted expression of SOD and CAT genes in both isolates under elevated CO2 concentrations. The results clearly showed that two isolates indicated different resistance patterns in response to elevated CO2 concentrations. The molecular and biochemical markers obtained from this study are the basic information that can be used in microalgae strain selection and improvement for CO2 capturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. .1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004a) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004b) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cardozo KH, Oliveira MA, Tavares MF, Colepicolo P, Pinto E (2002) Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate Lingulodinium polyedrum. Biol Rhythm Res 33:371–382

    Article  CAS  Google Scholar 

  • Carvalho AM, Neto AM, Tonon AP, Pinto E, Cardozo KH, Brigagão M, Barros MP, Torres MA, Magalhães P, Campos SC (2004) Circadian protection against oxidative stress in marine algae. Hypnos 1:142–157

    Google Scholar 

  • Chao Y-Y, Chen C-Y, Huang W-D, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chia MA, Cordeiro-Araújo MK, Lorenzi AS, do Carmo Bittencourt-Oliveira M (2017) Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Ecotoxicol Environ Saf 142:189–199

    Article  CAS  PubMed  Google Scholar 

  • da Rosa GM, Moraes L, Cardias BB, Costa JAV (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol 192:321–327

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dehghani J, Movafeghi A, Barzegari A, Barar J (2017) Efficient and stable transformation of Dunaliella pseudosalina by 3 strains of Agrobacterium tumefaciens. BioImpacts: BI 7:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demmiole- Adams B, Adams III, William W (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

  • Dicko MH, Gruppen H, Traoré AS, Voragen AG, van Berkel WJ (2006) Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol Molec Biol Rev 1:20–37

    Google Scholar 

  • Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165

    Article  CAS  PubMed  Google Scholar 

  • ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Liozon R, Mousseau M (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol 16:425–432

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Barros VR, Dokken D, Mach K, Mastrandrea M, Bilir T, Chatterjee M, Ebi K, Estrada Y, Genova R (2014) IPCC, 2014: climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    Article  CAS  PubMed  Google Scholar 

  • Giordano M (2001) Interactions between C and N metabolism in Dunaliella salina cells cultured at elevated CO2 and high N concentrations. J Plant Physiol 158:577–581

    Article  CAS  Google Scholar 

  • Giordano M, Davis JS, Bowes G (1994) Organic carbon release by Dunaliella salina (Chlorophyta) under different growth conditions of CO2, nitrogen, and salinity. J Phycol 30:249–257

    Article  CAS  Google Scholar 

  • Gnanasekaran N, John JR, Sakthivel G, Kalavathy S (2017) The comparative studies of the phytochemical levels and the in vitro antioxidant activity of Tridax procumbens L. from different habitats. Free Radicals Antioxid 7(1) 50-56

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol 36:269–274

    CAS  Google Scholar 

  • Guo P, Zhang Y, Zhao Y (2018) Biocapture of CO2 by different microalgal-based technologies for biogas upgrading and simultaneous biogas slurry purification under various light intensities and photoperiods. Int J Environ Res Public Health 15:528

    Article  CAS  PubMed Central  Google Scholar 

  • Hassanpour H, Khavari-Nejad RA, Niknam V, Najafi F, Razavi K (2013) Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiol Mol Biol Plants 19:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejazi M, Wijffels R (2003) Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomol Eng 20:171–175

    Article  CAS  PubMed  Google Scholar 

  • Hejazi M, Khoshrouy R, Hosseinzadeh GN, Etemadi M, Madayen L, Javanmard A (2016) Conservation and biodiversity analysis of the microalga Dunaliella in shrinking highly saline Urmia Lake based on intron-sizing method. J Agric Sci and Technol 18 (6): 1693-1703

  • Hiscox JT, Israelstam G (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jbir N, Chaïbi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. Compt Rend l'Acad Sci Ser III 324:863–868

    Article  CAS  Google Scholar 

  • Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Science 4 (10): 3930–3941

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Wang C, Sun G, Wang Z (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Larsson M, Larsson C-M, Mg G (1985) Photosynthetic nitrogen metabolism in high and low CO2-adapted Scenedesmus: I. Inorganic carbon-dependent O2 evolution, nitrate utilization and nitrogen recycling. J Exp Bot 36:1373–1386

    Article  CAS  Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yildiz I (2018) The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int J Energy Res 42:2997–3006

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol 12:263–267

    Article  CAS  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda J, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR (2016) Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28:2139–2146

    Article  CAS  Google Scholar 

  • Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari O, Das P, Gayen K, Mandal M, Halder G (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3. Biotech 7:99

    Google Scholar 

  • Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    Article  CAS  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, 151 doi:10013/epic.45156

  • Palma F, Lluch C, Iribarne C, García-Garrido JM, García NAT (2009) Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul 58:307–316

  • Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349

    Article  CAS  PubMed  Google Scholar 

  • Patil L, Kaliwal B (2017) Effect of CO2 concentration on growth and biochemical composition of newly isolated indigenous microalga Scenedesmus bajacalifornicus BBKLP-07. Appl Biochem Biotechnol 182:335–348

    Article  CAS  PubMed  Google Scholar 

  • Pinto E, Sigaud-kutner TC, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Pires J, Alvim-Ferraz M, Martins F, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053

    Article  CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala T, Ravishankar G (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Wahid A, Ashraf M, Basra SM (2010) Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. Int J Agric Biol 12:1–8

    CAS  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans Roy Soc B 363:2641–2650

    Article  CAS  Google Scholar 

  • Raymond J, Rakariyatham N, Azanza J (1993) Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry 34:927–931

    Article  CAS  Google Scholar 

  • Razzak SA, Al-Aslani I, Hossain MM (2016) Hydrodynamics and mass transfer of CO2 in water in a tubular photobioreactor. Eng Life Sci 16:355–363

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Faramarzi MA (2019) Antioxidative responses of Nostoc ellipsosporum and Nostoc piscinale to salt stress. J Appl Phycol 31:157–169

    Article  CAS  Google Scholar 

  • Salih FM (2011) Microalgae tolerance to high concentrations of carbon dioxide: a review. J Environ Prot 2:648–654

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaki F, Ebrahimzadeh Maboud H, Niknam V (2018a) Penconazole alleviates salt-induced damage in safflower (Carthamus tinctorius L.) plants. J Plant Interact 13:420–427

    Article  CAS  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2018b) Growth enhancement and salt tolerance of safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biol 13:16–22

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012: 217037

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568

    Article  CAS  Google Scholar 

  • Solovchenko A, Gorelova O, Selyakh I, Pogosyan S, Baulina O, Semenova L, Chivkunova O, Voronova E, Konyukhov I, Scherbakov P, Lobakova E (2015) A novel CO2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): acclimation to and performance at a high carbon dioxide level. Algal Res 11:399–410

    Article  Google Scholar 

  • Song D, Xi B, Sun J (2016) Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. J Ocean Univ China 15:124–130

    Article  CAS  Google Scholar 

  • Sorahinobar M, Niknam V, Ebrahimzadeh H, Soltanloo H, Behmanesh M, Enferadi ST (2016) Central role of salicylic acid in resistance of wheat against Fusarium graminearum. J Plant Growth Regul 35:477–491

    Article  CAS  Google Scholar 

  • Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, Gothandam KM (2018) Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci Rep 8:6972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Tatar O, Gevrek I (2008) Lipid peroxidation and water content of wheat. Asian J Plant Sci 7:409–412

    Article  CAS  Google Scholar 

  • Torabi S, Niknam V (2011) Effects of iso-osmotic concentrations of NaCl and mannitol on some metabolic activity in calluses of two Salicornia species. Vitro Cell Develop Biol-Plant 47:734–742

    Article  CAS  Google Scholar 

  • Tsuzuki M, Gantar M, Aizawa K, Miyachi S (1986) Ultrastructure of Dunaliella tertiolecta cells grown under low and high CO2 concentrations. Plant Cell Physiol 27:737–739

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  PubMed  Google Scholar 

  • Westerhoff P, Hu Q, Esparza-Soto M, Vermaas W (2010) Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ Technol 31:523–532

    Article  CAS  PubMed  Google Scholar 

  • Xia JR, Gao KS (2005) Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol 47:668–675

    Article  CAS  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8:e24525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    Article  CAS  Google Scholar 

  • Yang F, Xiang W, Sun X, Wu H, Li T, Long L (2014) A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Mar Drugs 12:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y (2017) ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. J Photochem Photobiol B 173:360–367

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R (2012) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of this research was provided equally by Agricultural Biotechnology Institute and Biotechnology Development Council of Iran and University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vahid Niknam or Mohammad Amin Hejazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghimifam, R., Niknam, V., Ebrahimzadeh, H. et al. The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33). J Appl Phycol 32, 175–187 (2020). https://doi.org/10.1007/s10811-019-01914-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01914-6

Keywords

Navigation