Skip to main content
Log in

Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Photosynthetic mitigation of CO2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO2 fixation rate was observed at 15% CO2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO2 fixation was 0.12 ± 0.002 g/l/day at 15% CO2 concentration. The carbohydrate and lipid content were maximum at 25% CO2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology., 184, 190–201.

    Article  CAS  Google Scholar 

  2. Ramaraj, R., Tsai, D. D. W., & Chen, P. H. (2014). Freshwater microalgae niche of air carbon dioxide mitigation. Ecoloogical Engineering, 68, 47–52.

    Article  Google Scholar 

  3. Ritschard, R. L. (1992). Marine algae as a CO2 sink. Water Air Soil Pollution, 64, 289–303.

    Article  CAS  Google Scholar 

  4. Toledo, C. A., Morales, M., Novelo, E., & Revah, S. (2013). Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresourorce Technology., 130, 652–658.

    Article  Google Scholar 

  5. Online WMO statement on the status of the global climate in 2012. Available http://www.wmo.int/pages/prog/wcp/wcdmp/documents/WMO_1108.pdf.

  6. Richard, S. J. T. (2009). The economic effects of climate change. Journal of Economic Perspectives, 23(2), 29–51 Springer.

    Article  Google Scholar 

  7. Stewart, C., & Hessami, M. A. (2005). A study of methods of carbon dioxide capture and sequestration the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management., 46, 403–420.

    Article  CAS  Google Scholar 

  8. Lara-Gil, J. A., Álvarez, M. M., & Pacheco, A. (2014). Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. Journal of Applied Phycology., 26, 357–368.

    Article  CAS  Google Scholar 

  9. Houser, J. B., Venable, M. E., Sakamachi, Y., Hambourger, M. S., Herrin, J., & Tuberty, S. R. (2014). Wastewater remediation using algae grown on a substrate for biomass and biofuel production. Journal of Environmental Protection., 5, 895–904.

    Article  Google Scholar 

  10. Kightlinger, W., Chen, K., Pourmir, A., Crunkleton, D. W., Price, G. L., & Johannes, T. W. (2014). Production and characterization of algae extract from Chlamydomonas reinhardtii. Electronic Journal of Biotechnology, 17(1), 14–18.

    Article  Google Scholar 

  11. Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.

    Article  CAS  Google Scholar 

  12. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.

    Article  CAS  Google Scholar 

  13. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology., 100, 833–838.

    Article  CAS  Google Scholar 

  14. de Morais, M. G., & Costa, J. A. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Managememnt., 48, 2169–2173.

    Article  Google Scholar 

  15. Samarpita, B., Abhijit Sarma, R., Kaustubha, M., & Aloke, K. G. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresource Technology, 143, 369–377.

    Article  Google Scholar 

  16. Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R. L., & Inomata, H. (2009). Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresource Technology., 100, 5237–15242.

    Article  CAS  Google Scholar 

  17. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology., 99, 3389–3396.

    Article  CAS  Google Scholar 

  18. Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz, S. V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology., 101, 5892–5896.

    Article  CAS  Google Scholar 

  19. Vidyashankar, S., Deviprasad, K., Chauhan, V. S., Ravishankar, G. A., & Sarada, R. (2013). Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresource Technology., 144, 28–37.

    Article  CAS  Google Scholar 

  20. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering., 102, 100–112.

    Article  CAS  Google Scholar 

  21. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., & Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 1, 36.

    Google Scholar 

  22. Mariana, A., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology., 139, 149–154.

    Article  Google Scholar 

  23. Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology., 118, 61–66.

    Article  CAS  Google Scholar 

  24. Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology., 102, 3071–3076.

    Article  CAS  Google Scholar 

  25. Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., Vicente, A. (2016). Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. Journal of Applied Phycology, 1–6.

  26. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry., 226, 497–509.

    CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry., 193, 265–275.

    CAS  Google Scholar 

  28. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In L. Packer & R. Douce (Eds.), Methods in enzymology (Vol. 148, pp. 350–382). London: Academic Press.

    Google Scholar 

  29. Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology., 22, 245–279.

    Article  CAS  Google Scholar 

  30. Shakeel, A.A., Shivasharana, C.T., Kaliwal, B.B. (2016). Identification and characterisation of Chlorella vulgaris for biodiesel production. International Journal of Scientific Research and Engineering, 3(1).

  31. Metting, B., & Pyne, J. W. (1986). Biologically-active compounds from microalgae. Enzyme and Microbial Technology., 8, 386–394.

    Article  CAS  Google Scholar 

  32. Francisco, X., Malcata, A., Guedes, C., & Amaro, H. M. (2011). Microalgae as sources of carotenoids. Marine Drugs., 9, 625–644.

    Article  Google Scholar 

  33. Online: “Environmental Analysis Study” (2006). Department of Rural Development and Panchayat Raj. Government of Karnataka. July 2001. https://en.wikipedia.org/wiki/Bagalkot_district#cite_note-worldbank-10.

  34. Flechtner, V. R., Johansen, J. R., & And Clark, W. C. (1998). Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist, 58, 295–311.

    Google Scholar 

  35. Mary, S., Sudhakar, R., Anwar, A. F., Selvaraju, G. D., & Mohandass, R. (2014). Agrobacterium-mediated transformation of three freshwater microalgal strains. Polish Journal of Microbiology., 63(4), 387–392.

    Google Scholar 

  36. Deng, D., & Tam, N. F. (2015). Isolation of microalgae tolerant to polybrominated diphenyl ethers (PBDEs) from wastewater treatment plants and their removal ability. Bioresource Technology., 177, 289–297.

    Article  CAS  Google Scholar 

  37. Riebesell, U., Wolf-Gladrow, D. A., & Smetacek, V. S. (1993). Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.

    Article  CAS  Google Scholar 

  38. Morais, M. G. D., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology., 129, 439–445.

    Article  Google Scholar 

  39. Burkhardt, S., Riebesell, U., & Zondervan, I. (1999). Stable carbon isotope fractionation by marine phytoplankton in response to day length, growth rate, and CO2 availability. Marine Ecology Progress Series., 194, 31–41.

    Article  Google Scholar 

  40. Yang, Y., & Gao, K. (2003). Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (chlorophyta). Journal of Applied Phycology, 15, 1–11.

    Article  Google Scholar 

  41. Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green algae Botryococcus braunii. Biotechnology, 12(7), 553–556.

    CAS  Google Scholar 

  42. Sarat, T. C., Deepak, R. S., Maneesh, M. K., Mukherji, S., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2016). Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresource Technology, 207, 430–439.

    Article  Google Scholar 

  43. Varshney, P., Sohoni, S., Wangikar, P. P., & Beardall, J. Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. Jorrnal of Applied Phycology. doi:10.1007/s10811-016-0797-4.

  44. Basu, S., Roy, A. S., Mohanty, K., & Ghoshal, A. K. (2013). Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam. India. Bioresource Technology., 143, 369–377.

    Article  CAS  Google Scholar 

  45. Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. (2012). The cell walls of green algae: a journey through evolution and diversity. Frontier Plant Science, 3, 1–7.

    Google Scholar 

  46. Moraes, L., da Rosa, G. M., Cardias, B. B., dos Santos, L. O., & Costa, J. A. V. (2016). Microalgal biotechnology for greenhouse gas control: carbon dioxidefixation by spirulina sp. at different diffusers. Ecological Engineering., 91, 426–431.

    Article  Google Scholar 

  47. Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., & Teixeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88, 3331–3335.

    Article  CAS  Google Scholar 

  48. Šoštaricˇ, M., Klinar, D., Bricelj, M., Golob, J., Berovicˇ, M., & Likozar, B. (2012). Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnology., 29, 325–331.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are profusely thankful to the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, New Delhi, for funding the Bioinformatics Infrastructure Facility Project (BT/BI/25/001/2006 VOL II date 05-03-2012) and also the Interdisciplinary Program for Life Science Project (BT/PR/4555/INF/22/126/2010 dated 30-09-2010) and the P. G Departments of Biotechnology and Microbiology, Karnatak University, Dharwad, for providing the facilities for pursuing the research work at the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basappa Kaliwal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies related to animals and human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, L., Kaliwal, B. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07. Appl Biochem Biotechnol 182, 335–348 (2017). https://doi.org/10.1007/s12010-016-2330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2330-2

Keywords

Navigation